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*A Primer on E-Values/E-Processes



E-Value: “E is the New P”
• Given  data points  (with a fixed sample size), an e-value  

for a composite null hypothesis  is a nonnegative random variable satisfying 
 

• E-values can be used for testing: for any , by Markov’s inequality, 
 

• E-values can be combined easily (under arbitrary dependence): If we have  
 arbitrarily dependent e-values  for , their mean is also an e-value for : 

 
 

𝗇 𝖷𝟣, . . . , 𝖷𝗇 𝖤 = 𝖤𝗇(𝖷𝟣, . . . , 𝖷𝗇)
𝖧𝟢

α ∈ (𝟢, 𝟣)

𝖪 𝖤(𝟣), . . . , 𝖤(𝖪) 𝖧𝟢 𝖧𝟢
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.𝔼𝖧𝟢 [𝖤] ≤ 𝟣

Ville, Wald, Kelly, Robbins, Cover, Vovk, Shafer, Grünwald, Ramdas, Wang, …

.𝔼𝖧𝟢 [ 𝟣
𝖪

𝖪

∑
𝗄=𝟣

𝖤(𝗄)] =
𝟣
𝖪

𝖪

∑
𝗄=𝟣

𝔼𝖧𝟢 [𝖤(𝗄)] ≤ 𝟣

.𝖯(𝖤 ≥ 𝟣/α) ≤ α, ∀𝖯 ∈ 𝖧𝟢

A key benefit of using  
e-values over p-values!



Evidence Measures for Sequential Anytime-Valid Inference
cf. Ramdas, Grünwald, Shafer, & Vovk (Stat. Sci., 2023)

, 
for any  and .

𝖯(𝔭τ ≤ α) ≤ α
𝖯 ∈ 𝖧𝟢 α ∈ (𝟢, 𝟣)

P-Process  
-valued -process for 

(𝔭𝗍)𝗍≥𝟢
[𝟢, 𝟣] 𝔽 𝖧𝟢

,  
for any .

𝔼𝖯[𝔢τ] ≤ 𝟣
𝖯 ∈ 𝖧𝟢

E-Process  
Nonnegative -process for 

(𝔢𝗍)𝗍≥𝟢
𝔽 𝖧𝟢

 (Ville’s Inequality)𝔭𝗍 = 𝟣/𝗌𝗎𝗉𝗂≤𝗍𝔢𝗂

 (P-to-E Calibration)𝔢𝗍 = 𝖢(𝔭𝗍)

• Let  be a filtration, say,  (sequentially observed data). 

• Anytime-validity refers to validity at any arbitrary (possibly infinite) -stopping time :

𝔽 = (ℱ𝗍)𝗍≥𝟢 ℱ𝗍 = σ(𝖷𝟣, . . . , 𝖷𝗍)

𝔽 τ
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E-Process = Anytime-Valid Evidence Against the Null
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*Ramdas et al. (2020)

,  
for any .

𝔼𝖯[𝔢τ] ≤ 𝟣
𝖯 ∈ 𝖧𝟢

E-Process  
Nonnegative -process for 

(𝔢𝗍)𝗍≥𝟢
𝔽 𝖧𝟢

An e-process is expected to be small under the null;  
we want it to grow large under the alternative.



Can We Combine Arbitrary E-Processes?
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🤔 Can we test if this sequence is random (i.i.d.)  
at arbitrary data-dependent stopping times?

01110011100100010100100001110101100110101001… 

(e.g., first time we observe five consecutive zeros)



Example: Sequentially Testing Randomness
“Is your data stream actually random?”

• We want to sequentially test whether a binary stream of data is random: 
 
 

•  is a family of distributions over the entire sequence: . 

• Essentially “equivalent” to testing exchangeability. (Ramdas et al., 2022) 

• General takeaway translates to non-binary streams as well.

𝖷𝟣, 𝖷𝟤, . . .

𝖧𝗂𝗂𝖽
𝟢 𝖧𝗂𝗂𝖽

𝟢 = {𝖡𝖾𝗋(𝗉)∞ : 𝗉 ∈ [𝟢, 𝟣]}
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𝖧𝗂𝗂𝖽
𝟢 : 𝖷𝟣, 𝖷𝟤, . . . is i.i.d.



Two Different E-Processes Exist. Can We Combine Them?
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, 𝔢𝖼𝗈𝗇𝖿
𝗍 =

𝗍

∏
𝗂=𝟣 [𝟣 + λ (𝗉𝗂 −

𝟣
𝟤 )] λ ∈ ℝ

Changepoint alternatives 
(powerless against Markov)

A sub-filtration  
(NO data-dependent stopping!)

𝒢𝗍 = σ(𝗉𝟣, . . . , 𝗉𝗍)

Conformal Test Martingale  
(Vovk, Stat. Sci. 2021)

(𝔢𝖼𝗈𝗇𝖿
𝗍 )𝗍≥𝟢Universal Inference E-Process  

(Ramdas et al., IJAR 2022)
(𝔢𝖴𝖨

𝗍 )𝗍≥𝟢

FORM 𝔢𝖴𝖨
𝗍 =

mixture over Markov alternatives

maximum likelihood under iid null

POWERFUL 
AGAINST…

Markov alternatives 
(powerless against changepoints)

FILTRATION & 
STOPPING

The data filtration  
(allows data-dependent stopping)

ℱ𝗍 = σ(𝖷𝟣, . . . , 𝖷𝗍)

: conformal “p-values” that deviate from  under change𝗉𝗂 𝟣/𝟤

Fact: No test martingale for this null has power 
under the data filtration.



What Goes Wrong When Combining E-Processes Across Filtrations?

For a fixed sample size : 

• Suppose that  and  are  
two arbitrary e-values for . 

• Their mean is also an e-value for .

𝗇

𝖤𝗇 𝖤′ 𝗇
𝖧𝟢

𝖧𝟢
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𝔼𝖧𝟢 [ 𝟣
𝟤 (𝖤𝗇 + 𝖤′ 𝗇)]

=
𝟣
𝟤 (𝔼𝖧𝟢

[𝖤𝗇] + 𝔼𝖧𝟢
[𝖤′ 𝗇]) ≤ 𝟣

At a data-dependent stopping time : 

• Suppose that  and  are two 
arbitrary e-processes for . 

•  is defined in data filtration ;  
 is defined in a sub-filtration .

τ𝔽

(𝔢𝗍)𝗍≥𝟢 (𝔢′ 𝗍)𝗍≥𝟢
𝖧𝟢

𝔢 𝔽
𝔢′ 𝔾 ⊆ 𝔽

𝔼𝖧𝟢 [ 𝟣
𝟤 (𝔢τ𝔽 + 𝔢′ τ𝔽)]

=
𝟣
𝟤 (𝔼𝖧𝟢

[𝔢τ𝔽] + 𝔼𝖧𝟢
[𝔢′ τ𝔽]) ≰ 𝟣



The General Question
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Can we combine arbitrary e-processes across filtrations 

such that the combined evidence is an e-process?



Combining E-Processes via -Lifting𝔢



First Result: P-Processes Can Be Lifted “Freely”

• A -valued process  is a p-process (“anytime-valid p-value”) for  defined in a 

filtration , if for any -stopping time , the random variable  is a p-value for .  
 
 
 
 
 

[𝟢, 𝟣] (𝔭𝗍)𝗍≥𝟢 𝖧𝟢

𝔽 𝔽 τ 𝔭τ 𝖧𝟢
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Theorem ( -lifting). Let  be a p-process for  in a sub-filtration .  

Then,  in the original filtration .

𝔭 (𝔭𝗍)𝗍≥𝟢 𝖧𝟢 𝔾 ⊆ 𝔽

(𝔭𝗍)𝗍≥𝟢 is a p-process for 𝖧𝟢 𝔽

More generally, any “probability statement” translates to finer filtrations.



Main Result: Lifting E-Processes Using Adjusters

Recall that  is an e-process for  in  if  for any -stopping time .(𝔢𝗍)𝗍≥𝟢 𝖧𝟢 𝔽 𝔼𝖧𝟢 [𝔢τ] ≤ 𝟣 𝔽 τ
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Theorem ( -lifting). Let  be an e-process for  in a sub-filtration . 
For any adjuster  (to be defined soon), 

1.  in the data filtration . 

2.  in the data filtration .

𝔢 (𝔢𝗍)𝗍≥𝟢 𝖧𝟢 𝔾 ⊆ 𝔽
𝖠

(𝖠(𝔢𝗍))𝗍≥𝟢
is an e-process for 𝖧𝟢 𝔽

(𝖠 (𝔢*𝗍 ))𝗍≥𝟢
is an e-process for 𝖧𝟢 𝔽

( )𝔢*𝗍 = 𝗆𝖺𝗑𝗂≤𝗍𝔢𝗂



Given: An e-process  in a sub-filtration .  

1. Obtain a p-process  in  (via Ville’s inequality): 

. 

2. By the -lifting theorem,  is also a p-process in .  

3. Convert into an e-process  in  via a p-to-e calibrator :  

.

(𝔢𝗍)𝗍≥𝟢 𝔾 ⊆ 𝔽

(𝔭𝗍)𝗍≥𝟢 𝔾

𝔭𝗍 = 𝟣/𝔢*𝗍

𝔭 (𝔭𝗍)𝗍≥𝟢 𝔽

(𝔢𝖺𝖽𝗃
𝗍 )𝗍≥𝟢 𝔽 𝖢

𝔢𝖺𝖽𝗃
𝗍 = 𝖢(𝔭𝗍)

Proof Outline: 𝔢 → 𝔭 → 𝔢𝖺𝖽𝗃
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} “Adjustment” 
(Dawid et al., 2011)



*What Are Adjusters?
• Any increasing, right-continuous function 

 that satisfies: 
 
 
 

• Recommended:  
 
 
 
(linear up to log terms)

𝖠 : [𝟣, ∞] → [𝟢, ∞]

17 Dawid et al. (2011a;b), Shafer et al. (2011); Koolen & Vovk (2014)

.𝖠𝗆𝗂𝗑(𝔢) =
𝔢 − 𝟣 − 𝗅𝗈𝗀(𝔢)

𝗅𝗈𝗀𝟤(𝔢)

.∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 = 𝟣



Testing Randomness Online: Null Case

18

.𝔼𝖧𝟢 [𝖠(�̃�*τ𝔽)] ≈ 𝟢 . 𝟦𝟩

Data: i.i.d. Bernoulli. 
first time we observe five consecutive 0’s (invalid in )τ𝔽 = 𝔾

.𝔼𝖧𝟢 [�̃�τ𝔽] ≈ 𝟣 . 𝟥𝟥

Adjusted Conformal E-Process

Unadjusted Conformal E-Process



Given:  

• A null hypothesis . 

• An e-process  for  that is valid 
in the data filtration . 

• Another e-process  for  that is 
valid only in a sub-filtration . 

• An adjuster . 

At any data-dependent stopping time : 

1. Take the running maximum of : 
. 

2. Adjust that e-process: . 

3. Combine them by averaging:

𝖧𝟢

(𝔢𝗍)𝗍≥𝟢 𝖧𝟢
𝔽

(�̃�𝗍)𝗍≥𝟢 𝖧𝟢
𝔾 ⊆ 𝔽

𝖠

τ𝔽

(�̃�𝗍)𝗍≥𝟢
�̃�*τ = 𝗆𝖺𝗑𝗂≤τ�̃�𝗂

𝖠 (�̃�*τ )

The General Recipe: Adjust-Then-Combine
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.�̄�τ =
𝟣
𝟤 [𝔢τ + 𝖠 (�̃�*τ )]



Testing Randomness Online: Alternative Cases
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The combined e-process achieves power against both alternatives.

Combined (“eLift+Avg”): �̄�𝗍 =
𝟣
𝟤 [𝔢𝖴𝖨

𝗍 + 𝖠 ((𝔢𝖼𝗈𝗇𝖿
𝗍 )*)]

Alternative #2: Changepoint (@ T=500)Alternative #1: First-order Markov



Additional Results & Discussion



Additional Results & Implications
1. Applications to other sequential composite testing problems.  

• Evaluating/Comparing k-step-ahead forecasters 

• Independence testing; group-invariant null testing 

2. In a formal sense, using an adjuster is necessary for lifting e-processes.

22

Theorem (informal):  

Any deterministic & increasing function that maps  to an e-process  
(in the same filtration) is necessarily an adjuster.

(𝔢*𝗍 )𝗍≥𝟢



E-Process vs. P-Process: Contrasts & Synergies

• Contrasts 

1. Usually, we can easily combine arbitrary e-processes but not p-processes. 

2. On the other hand, -lifting is free, but -lifting is not. 

• Synergies 

1. We can lift e-processes by calibrating them into p-processes (via adjusters). 

2. We can combine arbitrary e-/p-processes across arbitrary filtrations.

𝔭 𝔢

23



Future Work

1. Sequential E-Multiple Testing  

• Adaptively stopping w.r.t. multiple e-processes can pose challenges! 

2. Optimal Combination Strategies for E-Processes in Specific Scenarios 

• Are there alternative strategies that are more powerful in specific 
combination scenarios? 

• Is there a way to avoid taking the running maximum?

24



Thank You
For more, check out YJ’s webpage: 
https://yjchoe.github.io/

Questions?

FILTRATION

Yo Joong Choe & Aaditya Ramdas (2024).  
“Combining Evidence Across Filtrations.”  
Preprint: https://arxiv.org/abs/2402.09698

https://yjchoe.github.io/
https://arxiv.org/abs/2402.09698


Appendix



Combining evidence across filtrations via -lifting𝔢

27

�̄�τ = γ𝔢τ + (𝟣 − γ)𝖠(𝔢′ *τ )} combining evidence 
(via averaging)𝖠(𝔢′ *τ )

-lifting𝔢
( : adjuster)𝖠

𝔢τ

Data Filtration ℱτ

𝔢′ τ

Sub-Filtration 𝒢τ

: anytime-valid 
: NOT anytime-valid



Testing-By-Betting
Protocol (Testing a probability by betting):  

Casino proposes a probability (“null hypothesis”)  over . 

Skeptic starts with initial wealth . 

For rounds : 

1. Skeptic chooses a betting function  such that . 

2. Reality announces the outcome . 

3. Skeptic’s wealth is updated: .

𝖯 𝒴∞

𝖬𝟢 = 𝟣

𝗍 = 𝟣, 𝟤, . . .

𝖲𝗍 : 𝒴 → ℝ≥𝟢 𝔼𝖯[𝖲𝗍(𝖸𝗍)] = 𝟣

𝗒𝗍 ∈ 𝒴

𝖬𝗍 = 𝖬𝗍−𝟣 ⋅ 𝖲𝗍(𝗒𝗍)

28 cf. Shafer (2021); Cournot (1800s)



Testing-By-Betting
Bet against the null; accumulated wealth is the evidence against the null

The Fundamental Principle of Testing-by-Betting: 
Skeptic can discredit  to the extent that  is large. 

Skeptic’s wealth , a test martingale for , is 

• Adapted: at round , Skeptic bets only knowing 
information up to round . 

• Anytime-valid: under , Skeptic’s expected wealth 
is bounded under optional stopping, i.e.,  

𝖯 𝖬𝗍

(𝖬𝗍)𝗍≥𝟢 𝖯

𝗍
𝗍 − 𝟣

𝖯

29

cf. Shafer (2021); Cournot (1800s)

For any stopping time ,  .τ 𝔼𝖯[𝖬τ] ≤ 𝟣

Protocol (Testing a probability by betting).  
Players: Casino, Skeptic, Reality 
 
Casino proposes a probability  on . 
Skeptic starts with initial wealth . 
For rounds : 

1. Skeptic chooses a betting function 
 such that . 

2. Reality announces the outcome . 
3. Skeptic’s wealth is updated as: 

.

𝖯 𝒴∞

𝖬𝟢 = 𝟣
𝗍 = 𝟣, 𝟤, . . .

𝖲𝗍 : 𝒴 → ℝ≥𝟢 𝔼𝖯[𝖲𝗍(𝖸𝗍)] = 𝟣
𝗒𝗍 ∈ 𝒴

𝖬𝗍 = 𝖬𝗍−𝟣 ⋅ 𝖲𝗍(𝗒𝗍)



E-values generalize likelihood ratios
• Outside of a sequential setup (e.g. i.i.d. data and fixed sample size), we can still define “e-

values”. Given a probability distribution , an e-value  is a nonnegative r.v. that satisfies 

• When testing a point null  against a point alternative ,  
the likelihood ratio  is an e-value:  

• In the game-theoretic setup, the skeptic’s bet in each round is an e-value.  
(The bet induces an “implied alternative” .) 

• Any e-process at a stopping time is an e-value.

𝖯 𝖤

𝖧𝟢 : 𝖸 ∼ 𝖯 𝖧𝟣 : 𝖸 ∼ 𝖰
𝖰/𝖯

𝖰

30

𝔼𝖯 [ 𝖰(𝖷)
𝖯(𝖷) ] = ∫

𝖰(𝗑)
𝖯(𝗑)

𝖯(𝗑)𝖽𝗑 = ∫ 𝖰(𝗑)𝖽𝗑 = 𝟣

.𝔼𝖯[𝖤] ≤ 𝟣

cf. Vovk and Wang (2021); Shafer (2021); Grünwald et al. (2024)



The Equivalence Lemma
Ramdas et al. (2020); Howard et al. (2021)

Let  be a sequence of events adapted to a filtration . (E.g., .) 

Given any probability  and any , the following statements are equivalent: 

(a) Time-uniform validity: . 

(b) Random time validity: for any (possibly infinite) random time , . 

(c) -anytime-validity: for any (possibly infinite) -stopping time , .

(ξ𝗍)𝗍≥𝟣 𝔾 ξ𝗍 = {𝔭𝗍 ≤ α}

𝖯 α ∈ (𝟢, 𝟣)

𝖯 ( ∪𝗍≥𝟣 ξ𝗍 ) ≤ α

𝖳 𝖯(ξ𝖳) ≤ α

𝔾 𝔾 τ𝔾 𝖯(ξτ𝔾) ≤ α
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-lifting Follows Directly From “The Lifting Lemma”𝔭

32

Lemma. Let  be a sequence of events adapted to a sub-filtration .  

Given any probability  and any , the following statements are equivalent: 

(a) -anytime-validity: for any -stopping time , . 

(b) -anytime-validity: for any -stopping time , .

(ξ𝗍)𝗍≥𝟣 𝔾 ⊆ 𝔽

𝖯 α ∈ (𝟢, 𝟣)

𝔾 𝔾 τ𝔾 𝖯(ξτ𝔾) ≤ α

𝔽 𝔽 τ𝔽 𝖯(ξτ𝔽) ≤ α

Any “probability statement” translates to finer filtrations.



Adjusters  P-to-E Calibrators⟺
• A decreasing, left-continuous function  is a (p-to-e) calibrator if 

 
 
 

• It is admissible if the above holds with equality. 

• There is a straightforward 1-to-1 correspondence between calibrators and adjusters. 
Setting , and by change-of-variables ( ),

𝖢 : [𝟢, 𝟣] → [𝟢, ∞]

𝖠(𝔢) = 𝖢(𝟣/𝔢) 𝔭 = 𝟣/𝔢

33 cf. Shafer et al. (2011); Vovk & Wang (2021)

.∫
𝟣

𝟢
𝖢(𝔭)𝖽𝔭 ≤ 𝟣

.∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 = ∫
∞

𝟣

𝖢(𝟣/𝔢)
𝔢𝟤

𝖽𝔢 = ∫
𝟣

𝟢
𝖢(𝔭)𝖽𝔭 ≤

(=)
𝟣



Other Examples in the Literature
1. Multi-step forecast evaluation/comparison 

• A valid strategy is to construct e-processes  in different coarsenings of the 

data filtration, say . (Henzi & Ziegel, 2022) 

• To evaluate across all coarsened filtrations, we need to -lift all  e-processes! 

2. Sequential independence testing 

• For this problem, there is no nontrivial test martingale w.r.t. the data filtration. (Henzi & 

Law, 2024) Existing e-processes thus operate on different coarsened filtrations.

(𝖾[𝗄]
𝗍 )𝗍≥𝟢

𝔾[𝗄] ⊊ 𝔽

𝔢 𝗁

34

1Henzi & Ziegel (2022); Arnold et al., (2023); Choe & Ramdas (2023)
2Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); Podkopaev et al. (2023); Henzi & Law (2024)



Example: Comparing Multi-Step Sequential Forecasters
• Suppose we compare two sequential forecasters with lag  using some scoring rule  w.r.t. : 

 

• If , /  measures the average forecast score difference on even/odd days. 

• When testing for the null , for each offset , we need to construct an e-process  

under different coarsening of the filtration  for each  (updates on every even/odd days). 

• To test for the combined null  (an intersection), we want to -lift all  e-processes 

into the data filtration  before combining them:

𝗁 𝖲 𝔽 = (ℱ𝗍)𝗍≥𝟢

𝗁 = 𝟤 Δ[𝟢]
𝗍 Δ[𝟣]

𝗍

ℋ[𝗄]
𝟢 : Δ[𝗄]

𝗍 ≤ 𝟢, ∀𝗍 𝗄 (𝔢[𝗄]
𝗍 )𝗍≥𝟢

𝔽 𝗄

ℋ𝟢 : Δ[𝗄]
𝗍 ≤ 𝟢, ∀𝗍, ∀𝗄 𝔢 𝗁

𝔽

35

Each  is an e-process for , but only w.r.t. the sub-filtration .(𝔢[𝗄]
𝗍 )𝗍≥𝟢 ℋ[𝗄]

𝟢 𝔾[𝗄] ⊊ 𝔽

Henzi & Ziegel (2022) 
Arnold et al. (2022)  

Choe & Ramdas (2023)

.Δ[𝗄]
𝗍 =

𝟣
|𝖨[𝗄]

𝗍 | ∑
𝗂∈𝖨[𝗄]

𝗍

𝔼 [𝖲(𝗉𝗂, 𝗒𝗂+𝗁−𝟣) − 𝖲(𝗊𝗂, 𝗒𝗂+𝗁−𝟣) ∣ ℱ𝗂−𝟣], ∀𝗄 ∈ [𝗁]

.�̄�𝗍 =
𝟣
𝗁

𝗁

∑
𝗄=𝟣

𝖠 ((𝔢[𝗄]
𝗍 )*), ∀𝗍



Example: Testing Independence
• Given an i.i.d. stream of paired data , suppose we test if the joint 

distribution factorizes: 

• Similar to the exchangeability null, there exist no nontrivial test martingale adapted to 
the data filtration . Two known e-processes include: 

• Pairwise betting (SR’23; PBKR’23; SR’24): adapted to the filtration w/ pairs of data. 

• Rank-based test martingale (HL’23): adapted to the filtration w/ rank stats of data. 

• In this case, BOTH e-processes are constructed w.r.t. their own, non-overlapping sub-
filtrations. So we should lift both of them before taking the average.

𝖹𝗍 = (𝖷𝗍, 𝖸𝗍) ∼ 𝖯𝖷𝖸

𝔽
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.ℋ𝟢 : 𝖯𝖷𝖸 = 𝖯𝖷 × 𝖯𝖸 vs. ℋ𝟣 : 𝖯𝖷𝖸 ≠ 𝖯𝖷 × 𝖯𝖸

cf. Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); 
Podkopaev et al. (2023); Henzi & Law (2023)



Theorem: Equivalent characterizations of adjusters

37 cf. Dawid et al. (2011a;b); Shafer et al. (2011); Koolen & Vovk (2014)

 for  
any -stopping time  and  
any -safe e-process .

𝔼𝖯[𝖠(𝖾*τ )] ≤ 𝟣
𝔾 τ
𝔾 (𝖾𝗍)𝗍≥𝟢

Equivalent defn. 
for e-processesThere is a -safe NSM  

that dominates  for  
any -safe e-process .

𝔾
𝖠(𝖾*𝗍 )

𝔾 (𝖾𝗍)𝗍≥𝟢

.∫
∞

𝟣

𝖠(𝗒)
𝗒𝟤

𝖽𝗒 ≤ 𝟣
 for  

any -stopping time  and  
any -safe e-process .

𝔼𝖯[𝖠(𝖾*τ )] ≤ 𝟣
𝔽 τ

𝔾 (𝖾𝗍)𝗍≥𝟢

Dawid et al. (2011)

Game-Theoretic Definition

-lifting𝔢
Trivial

E-Process Definition 
“  is a -safe e-process for any ”𝖠(𝖾*𝗍 ) 𝔾 𝖾𝗍



A Corollary on Coarsening the Filtration

• Interestingly, this is NOT the case if “e-process” is replaced with “test martingale”.
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Corollary. Let  be a composite null and let  be a composite alternative. 

Suppose there exists a -powerful* e-process for  in a sub-filtration  of .  

Then, there exists a -powerful e-process for  in .

𝒫 𝒬
𝒬 𝒫 𝔾 𝔽

𝒬 𝒫 𝔽

*An e-process for  is -powerful if, for any , , -almost surely.𝒫 𝒬 𝖰 ∈ 𝒬∖𝒫 𝗅𝗂𝗆𝗌𝗎𝗉𝗍→∞𝔢𝗍 = ∞ 𝖰



Is it necessary to adjust the e-process?
• Suppose I claim to have a function that, given any composite null, if you give 

me any e-process for the null a coarse filtration, then the function can 
transform it into an e-process for the same null in the data filtration. 

• Is the function necessarily an adjuster? 

39



Necessity of Adjusters for -lifting𝔢

40

Theorem. Let  be an increasing function. The following are equivalent: 

(a)  is an adjuster. 

(b)  is an “ -lifter”: given any , for any e-process  for  in  and  

for any finer filtration ,  is an e-process for  in .

𝖠 : [𝟣, ∞] → [𝟢, ∞]

𝖠

𝖠 𝔢 𝒫 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
𝔽 ⊇ 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢

𝒫 𝔽

In particular, any deterministic & increasing function that maps  

 to some  (for each ) is necessarily an adjuster.𝗆𝖺𝗑𝗂≤𝗍𝔢𝗂 𝔢′ 𝗍 𝗍



A Characterization Theorem for Adjusters
Theorem. Let  be an increasing function. The following are equivalent: 

(a)  is an adjuster, i.e., it satisfies . 

(b)  is an “adjuster for test supermartingales” (previous slide). 

(c)  is an “adjuster for e-processes”: given any , for any e-process  for  w.r.t. , 

there exists another e-process  for  w.r.t.  such that, for all , . 

(d)  is an “ -lifter”: given any , for any e-process  for  w.r.t. , and any finer 

filtration ,  is an e-process for  w.r.t. . 

(e) Given any , for any e-process  for  w.r.t. ,  is an e-process for  

w.r.t. .

𝖠 : [𝟣, ∞] → [𝟢, ∞]

𝖠 ∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 ≤ 𝟣

𝖠

𝖠 𝒫 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
(𝔢′ 𝗍)𝗍≥𝟢 𝒫 𝔾 𝗍 𝖠(𝔢*𝗍 ) ≤ 𝔢′ 𝗍

𝖠 𝔢 𝒫 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
𝔽 ⊇ 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫 𝔽

𝒫 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫
𝔾

41



A game-theoretic definition of adjusters
How can we make betting on the running maximum a “fair game”?

42

• An increasing function  is an adjuster if and only if, 
for every test supermartingale  for some , 
there exists a test supermartingale  for  s.t. 
 
 

• Game-theoretically, adjusters allow betting with the 
running maximum of the gambler’s wealth.  

•  is an adjuster if and only if, in Protocol 1, Rival 
Skeptic has a betting strategy to ensure that  

. 

𝖠
(𝖬𝗍)𝗍≥𝟢 𝖯

(𝖬′ 𝗍)𝗍≥𝟢 𝖯

𝖠

𝖠(𝒦*𝗍 ) ≤ 𝒦′ 𝗍

Dawid et al. (2011a;b); Shafer et al. (2011)

.𝖠(𝖬*𝗍 ) ≤ 𝖬′ 𝗍, ∀𝗍

 is an “adjuster for test supermartingales”𝖠



Comparing k-Step-Ahead Weather Forecasters ☔

• Data: Precipitation data at four airport locations (Brussels, Frankfurt, London, & Zurich), 2007—2017. 

(Source: the European Centre of Medium-Range Weather Forecasts) 

• Forecasting Task: Using the 2007—2012 data, make accurate probability forecasts for 2012—2017. 

• Forecasting Methods: 

• Method #1: Isotonic Distributional Regression (IDR) Ensemble 

• Method #2: Heteroskedastic Censored Logistic Regression (HCLR) Ensemble 

• Baseline: Climatology (i.e., historical mean) 

• Evaluation: Mean expected Brier score difference

43 Vannitsem et al. (2018); Henzi et al. (2021)



Comparing 3-Day-Ahead Weather Forecasters ☔
*Note: Only the “Combined” version is valid at data-dependent sample sizes

Comparison #1: IDR vs. Climatology Comparison #2: IDR vs. HCLR

There is strong evidence to discredit 
Climatology over IDR. 
(passes the baseline)

There isn’t enough evidence to 
discredit HCLR over IDR. 

(consistent with prior findings)

Data: Precipitation in Zurich Airport
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End of Slides


