

Mind the Filtration: **E-Processes vs. P-Processes** @ Stopping Times

Yo Joong "YJ" Choe

Data Science Institute, University of Chicago <u>yjchoe.github.io</u>

Session: "E-Values vs. P-Values: Contrasts and Synergies" December 16, 2024 @ ICSDS 2024 (Nice, France)

MIND THE GAP FILTRATION

Main Reference for This Talk

Yo Joong Choe & Aaditya Ramdas (2024). "Combining Evidence Across Filtrations." Preprint: <u>https://arxiv.org/abs/2402.09698</u>

*A Primer on E-Values/E-Processes

E-Value: "E is the New P"

• Given **n** data points X_1, \ldots, X_n (with a <u>fixed</u> sample size), an e-value $E = E_n(X_1, \ldots, X_n)$ for a composite null hypothesis H_0 is a nonnegative random variable satisfying

- E-values can be used for testing: for any $\alpha \in (0, 1)$, by Markov's inequality, $P(E \ge 1/\alpha) \le \alpha, \quad \forall P \in H_0.$
- E-values can be combined easily (under arbitrary dependence): If we have K arbitrarily dependent e-values $E^{(1)}, \ldots, E^{(K)}$ for H_0 , their mean is also an e-value for H_0 :

$$E_{H_0} \left[\frac{1}{K} \sum_{k=1}^{K} E^{(k)} \right]$$

Ville, Wald, Kelly, Robbins, Cover, Vovk, Shafer, Grünwald, Ramdas, Wang, ...

$\mathbb{E}_{H_0}[E] \leq 1.$

$$= \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}_{H_0} \left[E^{(k)} \right] \le 1.$$

A key benefit of using e-values over p-values!

Evidence Measures for Sequential Anytime-Valid Inference

- Let $\mathbb{F} = (\mathcal{F}_t)_{t>0}$ be a filtration, say, $\mathcal{F}_t = \sigma(X_1, \dots, X_t)$ (sequentially observed data).

E-Process $(e_t)_{t>0}$ Nonnegative \mathbb{F} -process for H_0

 $\mathbb{E}_{\mathsf{P}}[\mathfrak{e}_{\tau}] \leq 1,$
for any $\mathsf{P} \in \mathsf{H}_{0}$.

cf. Ramdas, Grünwald, Shafer, & Vovk (Stat. Sci., 2023)

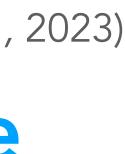
Anytime-validity refers to validity at any arbitrary (possibly infinite) \mathbb{F} -stopping time τ :

 $e_t = C(p_t)$ (P-to-E Calibration)

P-Process $(\mathfrak{P}_t)_{t\geq 0}$ [0, 1]-valued \mathbb{F} -process for H_0

$P(\mathfrak{p}_{\tau} \leq \alpha) \leq \alpha,$
for any $P \in H_0$ and $\alpha \in (0, 1)$.

 $p_t = 1/\sup_{i < t} e_i$ (Ville's Inequality)

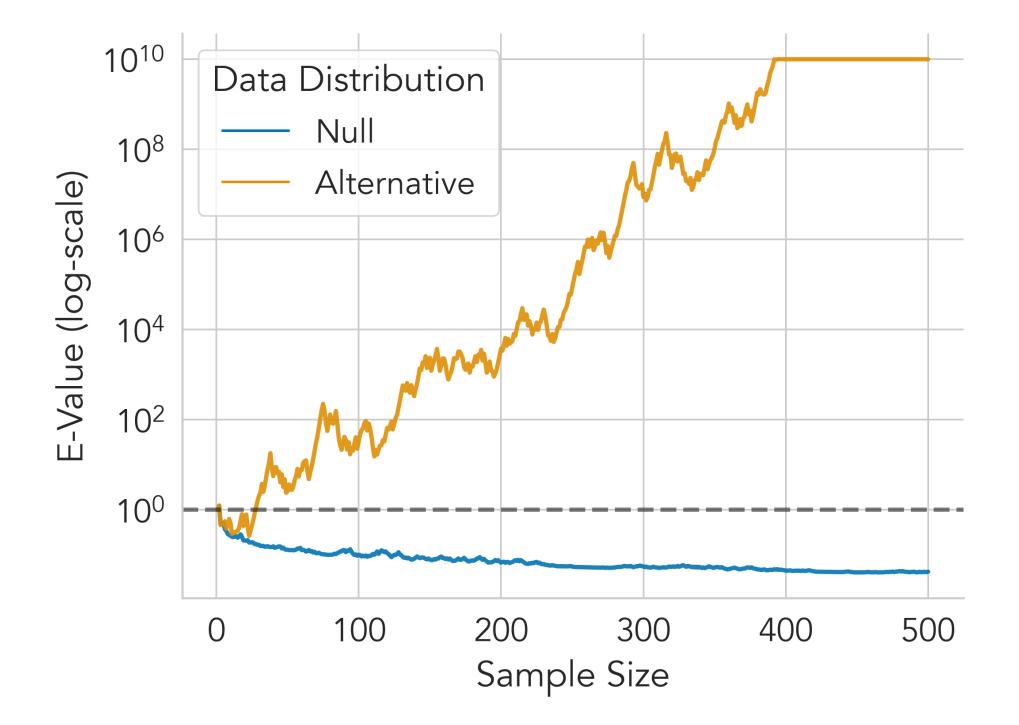


E-Process = Anytime-Valid Evidence Against the Null

E-Process $(e_t)_{t>0}$ Nonnegative \mathbb{F} -process for H_0

 $\mathbb{E}_{\mathsf{P}}[\mathbf{e}_{\tau}] \leq 1,$ for any $P \in H_0$.

*Ramdas et al. (2020)



An e-process is expected to be small under the **null**; we want it to grow large under the alternative.

Can We Combine Arbitrary E-Processes?

01110011100100010100001110101100110101001...

Can we test if this sequence is random (i.i.d.) at arbitrary data-dependent stopping times?

(e.g., first time we observe five consecutive zeros)

Example: Sequentially Testing Randomness "Is your data stream actually random?"

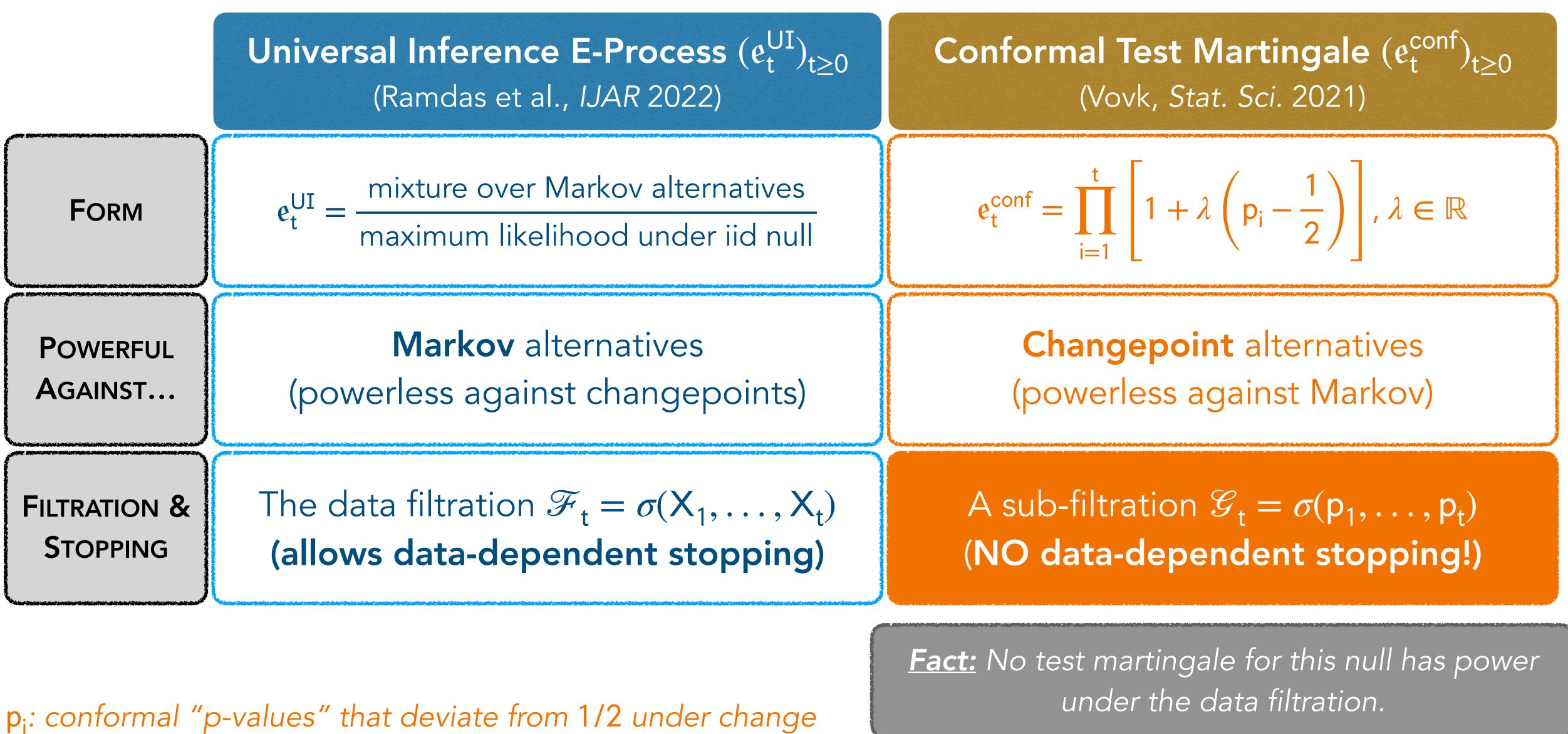
• We want to sequentially test whether a binary stream of data X_1, X_2, \ldots is random:

- H_0^{iid} is a family of distributions over the entire sequence: $H_0^{iid} = \{Ber(p)^{\infty} : p \in [0, 1]\}$.
- Essentially "equivalent" to testing exchangeability. (Ramdas et al., 2022)
- General takeaway translates to non-binary streams as well.

 $H_0^{iid}: X_1, X_2, \dots$ is i.i.d.

Two Different E-Processes Exist. Can We Combine Them?

10



What Goes Wrong When Combining E-Processes Across Filtrations?

For a fixed sample size n:

- Suppose that E_n and E'_n are two arbitrary e-values for H_0 .
- Their **mean** is also an e-value for H_0 .

$$\mathbb{E}_{H_0} \left[\frac{1}{2} \left(\mathbb{E}_n + \mathbb{E}'_n \right) \right]$$
$$= \frac{1}{2} \left(\mathbb{E}_{H_0} [\mathbb{E}_n] + \mathbb{E}_{H_0} [\mathbb{E}'_n] \right) \le 1$$

At a data-dependent stopping time $\tau^{\mathbb{F}}$:

- Suppose that $(e_t)_{t\geq 0}$ and $(e'_t)_{t\geq 0}$ are two arbitrary e-processes for H_0 .
- e is defined in data filtration \mathbb{F} ; e' is defined in a sub-filtration $\mathbb{G} \subseteq \mathbb{F}$.

$$\mathbb{E}_{\mathsf{H}_{0}}\left[\frac{1}{2}\left(\mathsf{e}_{\tau^{\mathbb{F}}}+\mathsf{e}_{\tau^{\mathbb{F}}}'\right)\right]$$
$$=\frac{1}{2}\left(\mathbb{E}_{\mathsf{H}_{0}}[\mathsf{e}_{\tau^{\mathbb{F}}}]+\mathbb{E}_{\mathsf{H}_{0}}[\mathsf{e}_{\tau^{\mathbb{F}}}']\right) \nleq 1$$

The General Question

Can we combine arbitrary e-processes across filtrations such that the combined evidence is an e-process?

Combining E-Processes via e-Lifting

First Result: P-Processes Can Be Lifted "Freely"

• A [0, 1]-valued process $(\mathfrak{p}_t)_{t>0}$ is a **p-process** ("anytime-valid p-value") for H₀ defined in a filtration \mathbb{F} , if for any \mathbb{F} -stopping time τ , the random variable \mathfrak{p}_{τ} is a p-value for H_{0} .

Theorem (p-lifting). Let $(\mathfrak{p}_t)_{t>0}$ be a p-process for H_0 in a sub-filtration $\mathbb{G} \subseteq \mathbb{F}$.

Then, $(\mathfrak{p}_t)_{t>0}$ is a p-process for H_0 in the original filtration \mathbb{F} .

More generally, any "probability statement" translates to finer filtrations.

Main Result: Lifting E-Processes Using Adjusters

Recall that $(e_t)_{t\geq 0}$ is an **e-process for** H_0 in \mathbb{F} if $\mathbb{E}_{H_0}[e_{\tau}] \leq 1$ for any \mathbb{F} -stopping time τ .

For any adjuster A (to be defined soon), 1. $(A(e_t))_{t>0}$ is an e-process for H_0 in the data filtration \mathbb{F} . 2. $(A(e_t^*))_{t>0}$ is an e-process for H_0 in the data filtration \mathbb{F} .

- <u>Theorem (e-lifting).</u> Let $(e_t)_{t>0}$ be an e-process for H_0 in a sub-filtration $\mathbb{G} \subseteq \mathbb{F}$.

 $(e_{t}^{*} = \max_{i < t} e_{i})$

Proof Outline: $e \rightarrow p \rightarrow e^{adj}$

- <u>Given</u>: An e-process $(e_t)_{t>0}$ in a sub-filtration $\mathbb{G} \subseteq \mathbb{F}$.
- 1. Obtain a p-process $(\mathfrak{p}_t)_{t>0}$ in G (via Ville's inequality):

$$\mathfrak{p}_t = 1/\mathfrak{e}_t^*.$$

2. By the p-lifting theorem, $(p_t)_{t>0}$ is also a p-process in F.

3. Convert into an e-process $(e_t^{adj})_{t>0}$ in F via a p-to-e calibrator C:

$$e_t^{adj} = C(\mathfrak{p}_t).$$

*What Are Adjusters?

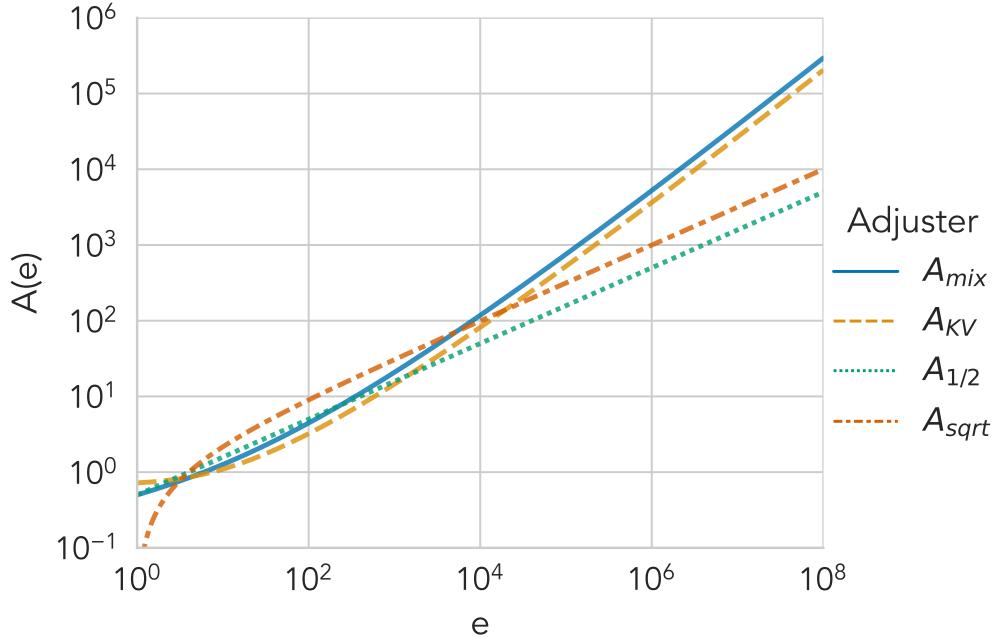
 Any increasing, right-continuous function A : $[1, \infty] \rightarrow [0, \infty]$ that satisfies:

$$\int_{1}^{\infty} \frac{A(e)}{e^2} de = 1.$$

Recommended:

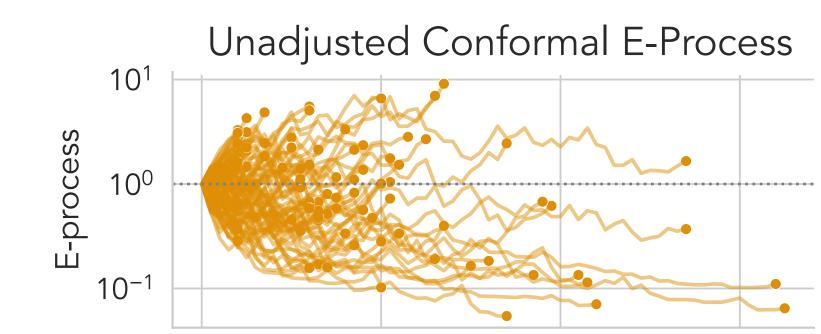
$$A_{mix}(e) = \frac{e - 1 - \log(e)}{\log^2(e)}.$$

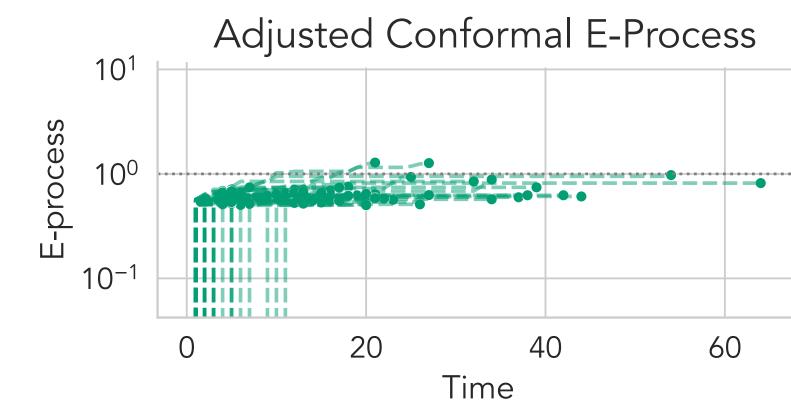
(linear up to log terms)



17 Dawid et al. (2011a;b), Shafer et al. (2011); Koolen & Vovk (2014)

Testing Randomness Online: Null Case





Data: i.i.d. Bernoulli.

 $\tau^{\mathbb{F}}$ = first time we observe five consecutive 0's (invalid in G)

 $\mathbb{E}_{\mathsf{H}_{0}}\left[\tilde{\mathsf{e}}_{\tau^{\mathbb{F}}}\right] \approx 1.33.$

 $\mathbb{E}_{\mathsf{H}_0} \left| \mathsf{A}(\tilde{\mathfrak{e}}^*_{\tau^{\mathbb{F}}}) \right| \approx 0.47.$

The General Recipe: Adjust-Then-Combine

Given:

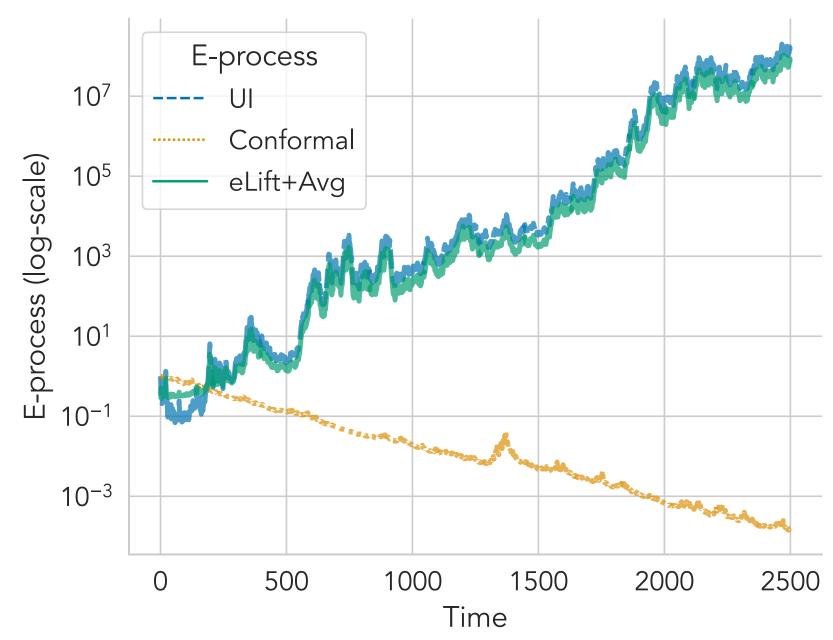
- A null hypothesis H_0 .
- An e-process $(e_t)_{t\geq 0}$ for H_0 that is valid in the data filtration \mathbb{F} .
- Another e-process $(\tilde{e}_t)_{t\geq 0}$ for H_0 that is valid **only in a sub-filtration** $\mathbb{G} \subseteq \mathbb{F}$.
- An adjuster **A**.

At any data-dependent stopping time $\tau^{\mathbb{F}}$:

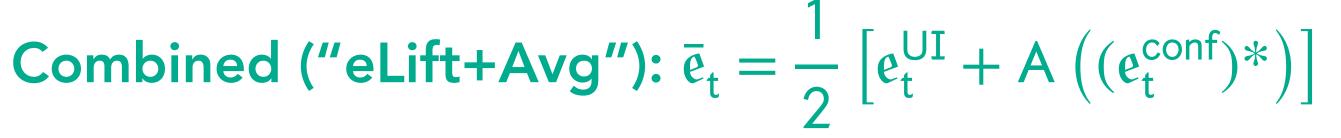
- 1. Take the running maximum of $(\tilde{e}_t)_{t\geq 0}$: $\tilde{e}_{\tau}^* = \max_{i\leq \tau} \tilde{e}_i$.
- 2. Adjust that e-process: A (\tilde{e}_{τ}^*) .
- 3. **Combine** them by averaging:

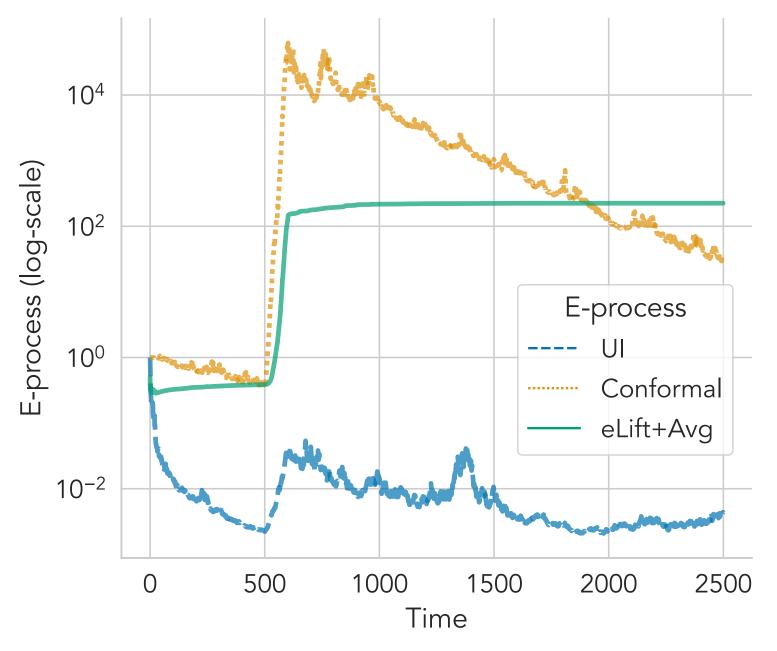
$$\bar{\mathbf{e}}_{\tau} = \frac{1}{2} \left[\mathbf{e}_{\tau} + \mathbf{A} \left(\tilde{\mathbf{e}}_{\tau}^* \right) \right].$$

Testing Randomness Online: Alternative Cases



Alternative #1: First-order Markov





Alternative #2: Changepoint (@ T=500)

The combined e-process achieves power against both alternatives.

Additional Results & Discussion

Additional Results & Implications

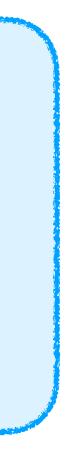
- 1. Applications to other sequential composite testing problems.
 - Evaluating/Comparing k-step-ahead forecasters
 - Independence testing; group-invariant null testing

Theorem (informal):

(in the same filtration) is **necessarily** an adjuster.

2. In a formal sense, using an adjuster is necessary for lifting e-processes.

Any deterministic & increasing function that maps $(e_t^*)_{t>0}$ to an e-process



E-Process vs. P-Process: Contrasts & Synergies

Contrasts

- 2. On the other hand, p-lifting is free, but e-lifting is **not**.

Synergies

- 2. We can combine arbitrary e-/p-processes across arbitrary filtrations.

1. Usually, we can easily combine arbitrary e-processes but **not** p-processes.

1. We can lift e-processes by calibrating them into p-processes (via adjusters).

Future Work

- **1. Sequential E-Multiple Testing**

- - Are there alternative strategies that are more powerful in <u>specific</u> combination scenarios?
 - Is there a way to avoid taking the running maximum?

• Adaptively stopping w.r.t. multiple e-processes can pose challenges!

2. Optimal Combination Strategies for E-Processes in Specific Scenarios

Thank You For more, check out YJ's webpage: https://yjchoe.github.io/

Questions?

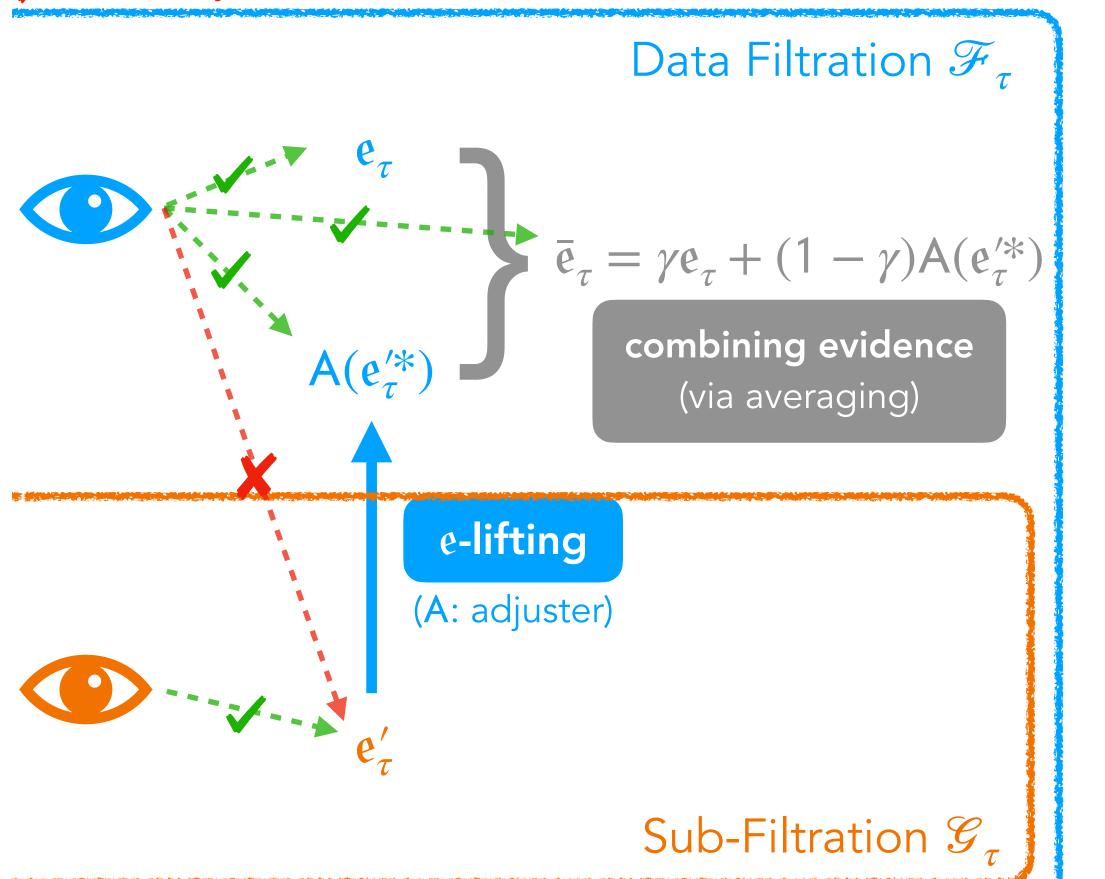
MIND THE GAP FILTRATION

Yo Joong Choe & Aaditya Ramdas (2024). "Combining Evidence Across Filtrations." Preprint: <u>https://arxiv.org/abs/2402.09698</u>

Appendix

Combining evidence across filtrations via e-lifting

: anytime-valid X : NOT anytime-valid



Testing-By-Betting

- Protocol (Testing a probability by betting):
- Casino proposes a probability ("null hypothesis") P over \mathscr{Y}^{∞} .
- Skeptic starts with initial wealth $M_0 = 1$.
- For rounds $t = 1, 2, \ldots$
- 2. Reality announces the outcome $y_t \in \mathcal{Y}$.
- 3. Skeptic's wealth is updated: $M_t = M_{t-1} \cdot S_t(y_t)$.

1. Skeptic chooses a betting function $S_t : \mathscr{Y} \to \mathbb{R}_{>0}$ such that $\mathbb{E}_{P}[S_t(Y_t)] = 1$.

cf. Shafer (2021); Cournot (1800s)

Testing-By-Betting Bet against the null; accumulated wealth is the evidence against the null

Protocol (Testing a probability by betting). Players: Casino, Skeptic, Reality

Casino proposes a **probability** P on \mathscr{Y}^{∞} . Skeptic starts with initial wealth $M_0 = 1$. For rounds $t = 1, 2, \ldots$:

- 1. Skeptic chooses a betting function $S_t: \mathscr{Y} \to \mathbb{R}_{>0}$ such that $\mathbb{E}_P[S_t(Y_t)] = 1$. 2. Reality announces the outcome $y_t \in \mathcal{Y}$.
- 3. Skeptic's wealth is updated as:

 $\mathbf{M}_{t} = \mathbf{M}_{t-1} \cdot \mathbf{S}_{t}(\mathbf{y}_{t}).$

- The Fundamental Principle of Testing-by-Betting: Skeptic can discredit P to the extent that M_{t} is large.
- Skeptic's wealth $(M_t)_{t>0}$, a **test martingale** for P, is
- Adapted: at round t, Skeptic bets only knowing information up to round t - 1.
- Anytime-valid: under P, Skeptic's expected wealth is bounded under optional stopping, i.e.,

For any stopping time τ , $\mathbb{E}_{\mathsf{P}}[\mathsf{M}_{\tau}] \leq 1$.

E-values generalize likelihood ratios

• When testing a point null H_0 : Y ~ P against a point alternative H_1 : Y ~ Q, the **likelihood ratio** Q/P is an e-value:

$$\mathbb{E}_{\mathsf{P}}\left[\frac{\mathsf{Q}(\mathsf{X})}{\mathsf{P}(\mathsf{X})}\right] = \int \frac{\mathsf{Q}(\mathsf{x})}{\mathsf{P}(\mathsf{x})} \mathsf{P}(\mathsf{x}) \mathsf{d}\mathsf{x} = \int \mathsf{Q}(\mathsf{x}) \mathsf{d}\mathsf{x} = 1$$

- In the game-theoretic setup, the skeptic's bet in each round is an e-value. (The bet induces an "implied alternative" Q.)
- Any e-process at a stopping time is an e-value.

Outside of a sequential setup (e.g. i.i.d. data and fixed sample size), we can still define "evalues". Given a probability distribution P, an e-value E is a nonnegative r.v. that satisfies

 $\mathbb{E}_{\mathsf{P}}[\mathsf{E}] \leq 1.$

cf. Vovk and Wang (2021); Shafer (2021); Grünwald et al. (2024) 30

The Equivalence Lemma Ramdas et al. (2020); Howard et al. (2021)

- Let $(\xi_t)_{t\geq 1}$ be a sequence of events adapted to a filtration G. (E.g., $\xi_t = \{p_t \leq \alpha\}$.)
- Given any probability P and any $\alpha \in (0, 1)$, the following statements are <u>equivalent</u>:
- (a) Time-uniform validity: $P(\bigcup_{t\geq 1} \xi_t) \leq \alpha$.
- (b) Random time validity: for any (possibly infinite) random time T, $P(\xi_T) \leq \alpha$.
- (c) G-anytime-validity: for any (possibly infinite) G-stopping time $\tau^{\mathbb{G}}$, $P(\xi_{\tau^{\mathbb{G}}}) \leq \alpha$.

p-lifting Follows Directly From "The Lifting Lemma"

(a) G-anytime-validity: for any G-stopping time τ^{G} , $P(\xi_{\tau^{G}}) \leq \alpha$. (b) **F**-anytime-validity: for any **F**-stopping time $\tau^{\mathbb{F}}$, $P(\xi_{\tau^{\mathbb{F}}}) \leq \alpha$.

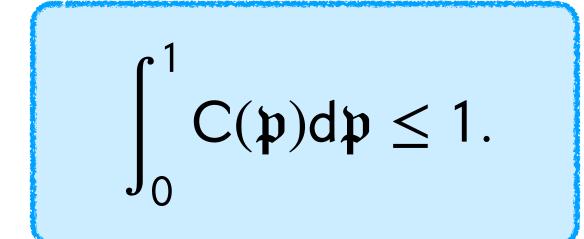
Any "probability statement" translates to finer filtrations.

- Lemma. Let $(\xi_t)_{t>1}$ be a sequence of events adapted to a sub-filtration $\mathbb{G} \subseteq \mathbb{F}$.
- Given any probability P and any $\alpha \in (0, 1)$, the following statements are <u>equivalent</u>:



Adjusters \iff P-to-E Calibrators

• A decreasing, left-continuous function $C : [0, 1] \rightarrow [0, \infty]$ is a (p-to-e) calibrator if



- It is admissible if the above holds with equality.
- Setting A(e) = C(1/e), and by change-of-variables ($\mathfrak{p} = 1/e$),

$$\int_{1}^{\infty} \frac{A(e)}{e^2} de = \int_{1}^{\infty} \frac{C(1/e)}{e^2} de = \int_{0}^{1} C(\mathfrak{p}) d\mathfrak{p} \leq 1.$$

• There is a straightforward 1-to-1 correspondence between calibrators and adjusters.

cf. Shafer et al. (2011); Vovk & Wang (2021)

Other Examples in the Literature

- 1. Multi-step forecast evaluation/comparison
 - A valid strategy is to construct e-processes $(e_t^{\lfloor k \rfloor})_{t>0}$ in different coarsenings of the data filtration, say $\mathbb{G}^{[k]} \subsetneq \mathbb{F}$. (Henzi & Ziegel, 2022)
 - To evaluate across all coarsened filtrations, we need to e-lift all h e-processes!

2. Sequential independence testing

¹Henzi & Ziegel (2022); Arnold et al., (2023); Choe & Ramdas (2023) ²Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); Podkopaev et al. (2023); Henzi & Law (2024)

For this problem, there is no nontrivial test martingale w.r.t. the data filtration. (Henzi & Law, 2024) Existing e-processes thus operate on different coarsened filtrations.

Example: Comparing Multi-Step Sequential Forecasters

$$\Delta_t^{[k]} = \frac{1}{|I_t^{[k]}|} \sum_{i \in I_t^{[k]}} \mathbb{E} \left[S(p_i, y_{i+h-1}) - S(q_i, y_{i+h-1}) \mid \mathscr{F}_{i-1} \right], \quad \forall k \in [h].$$

- If h = 2, $\Delta_{+}^{[0]}/\Delta_{+}^{[1]}$ measures the average forecast score difference on even/odd days.
- under different coarsening of the filtration \mathbb{F} for each k (updates on every even/odd days).

Each $(e_t^{[k]})_{t\geq 0}$ is an e-process for $\mathscr{H}_0^{[k]}$, but only w.r.t. the sub-filtration $\mathbb{G}^{[k]} \subsetneq \mathbb{F}$.

into the data filtration F before combining them:

Suppose we compare two sequential forecasters with lag h using some scoring rule S w.r.t. $\mathbb{F} = (\mathscr{F}_t)_{t \ge 0}$:

• When testing for the null $\mathscr{H}_0^{[k]}: \Delta_t^{[k]} \leq 0, \forall t$, for each offset k, we need to construct an e-process $(\mathfrak{e}_t^{[k]})_{t\geq 0}$

• To test for the combined null $\mathscr{H}_0: \Delta_t^{[k]} \leq 0, \forall t, \forall k$ (an intersection), we want to e-lift all h e-processes

$$A\left((e_t^{[k]})^*\right), \forall t.$$

Henzi & Ziegel (2022) Arnold et al. (2022) Choe & Ramdas (2023)

Example: Testing Independence

distribution factorizes:

$$\mathscr{H}_0: \mathsf{P}_{\mathsf{X}\mathsf{Y}} = \mathsf{P}_{\mathsf{X}} \times \mathsf{P}_{\mathsf{Y}}$$

- the data filtration F. Two known e-processes include:
- filtrations. So we should lift both of them before taking the average.

Given an i.i.d. stream of paired data $Z_t = (X_t, Y_t) \sim P_{XY}$, suppose we test if the joint

vs.
$$\mathscr{H}_1: \mathsf{P}_{\mathsf{X}\mathsf{Y}} \neq \mathsf{P}_{\mathsf{X}} \times \mathsf{P}_{\mathsf{Y}}$$
.

Similar to the exchangeability null, there exist no nontrivial test martingale adapted to

Pairwise betting (SR'23; PBKR'23; SR'24): adapted to the filtration w/ pairs of data.

Rank-based test martingale (HL'23): adapted to the filtration w/ rank stats of data.

In this case, BOTH e-processes are constructed w.r.t. their own, non-overlapping sub-

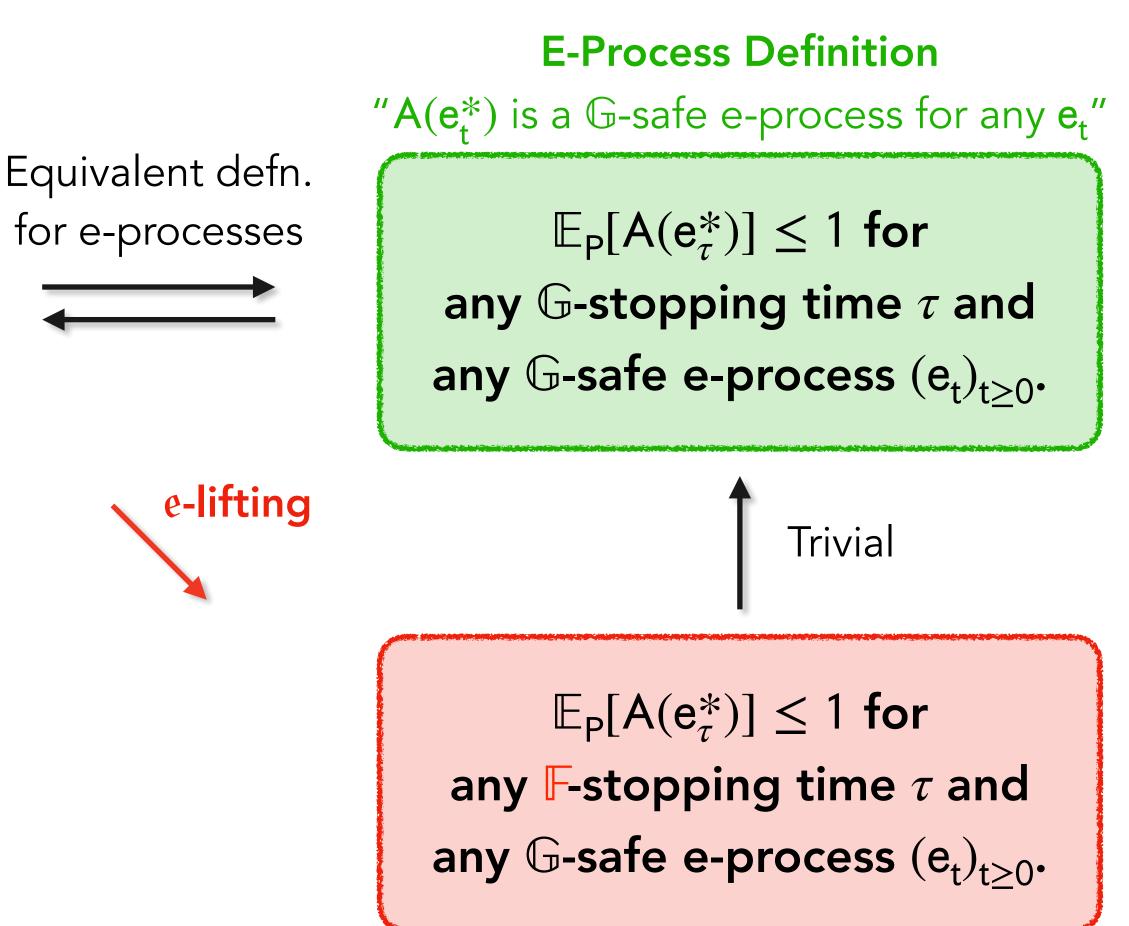
cf. Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); Podkopaev et al. (2023); Henzi & Law (2023)

Theorem: Equivalent characterizations of adjusters

Game-Theoretic Definition

There is a G-safe NSM that dominates $A(e_{t}^{*})$ for any G-safe e-process $(e_t)_{t>0}$.

Dawid et al. (2011)



cf. Dawid et al. (2011a;b); Shafer et al. (2011); Koolen & Vovk (2014) 37

A Corollary on Coarsening the Filtration

<u>**Corollary.**</u> Let \mathscr{P} be a composite null and let \mathscr{Q} be a composite alternative. Suppose there exists a Q-powerful* e-process for \mathcal{P} in a sub-filtration \mathbb{G} of \mathbb{F} . Then, there exists a Q-powerful e-process for \mathcal{P} in \mathbb{F} .

Interestingly, this is **NOT** the case if "e-process" is replaced with "test martingale".

*An e-process for \mathscr{P} is \mathscr{Q} -powerful if, for any $Q \in \mathscr{Q} \setminus \mathscr{P}$, $\lim_{t \to \infty} e_t = \infty$, Q-almost surely.

Is it necessary to adjust the e-process?

me any e-process for the null a coarse filtration, then the function can transform it into an e-process for the same null in the data filtration.

Is the function necessarily an adjuster?

Suppose I claim to have a function that, given any composite null, if you give

Necessity of Adjusters for e-lifting

(a) A is an adjuster. (b) A is an "e-lifter": given any \mathscr{P} , for any e-process $(e_t)_{t>0}$ for \mathscr{P} in G and for any finer filtration $\mathbb{F} \supseteq \mathbb{G}$, $(A(e_t^*))_{t>0}$ is an e-process for \mathscr{P} in \mathbb{F} .

<u>**Theorem.</u>** Let A : $[1, \infty] \rightarrow [0, \infty]$ be an increasing function. The following are **equivalent**:</u>

In particular, any deterministic & increasing function that maps $\max_{i < t} e_i$ to some e'_t (for each t) is necessarily an adjuster.

A Characterization Theorem for Adjusters

(a) A is an adjuster, i.e., it satisfies $\int_{1}^{\infty} \frac{A(e)}{e^{2}} de \leq 1.$

(b) A is an "adjuster for test supermartingales" (previous slide).

- (c) A is an "adjuster for e-processes": given any \mathscr{P} , for any e-process $(e_t)_{t>0}$ for \mathscr{P} w.r.t. \mathbb{G} , there exists another e-process $(e'_t)_{t>0}$ for \mathscr{P} w.r.t. \mathbb{G} such that, for all t, $A(e^*_t) \leq e'_t$.
- (d) A is an "e-lifter": given any \mathscr{P} , for any e-process $(e_t)_{t>0}$ for \mathscr{P} w.r.t. \mathbb{G} , and any finer filtration $\mathbb{F} \supseteq \mathbb{G}$, $(A(e_{t}^{*}))_{t>0}$ is an e-process for \mathscr{P} w.r.t. \mathbb{F} .
- (e) Given any \mathscr{P} , for any e-process $(e_t)_{t>0}$ for \mathscr{P} w.r.t. \mathbb{G} , $(A(e_t^*))_{t>0}$ is an e-process for \mathscr{P} w.r.t. G.

- <u>**Theorem.</u>** Let A : $[1, \infty] \rightarrow [0, \infty]$ be an increasing function. The following are <u>equivalent</u>:</u>

A game-theoretic definition of adjusters How can we make betting on the running maximum a "fair game"?

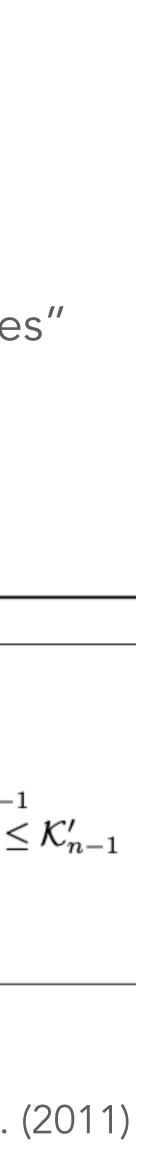
 An increasing function A is an adjuster if and only if, for every test supermartingale $(M_t)_{t>0}$ for some P, there exists a test supermartingale $(M'_t)_{t>0}$ for P s.t. A is an "adjuster for test supermartingales"

$$\mathsf{A}(\mathsf{M}^*_t) \leq \mathsf{M}'_t, \quad \forall t.$$

- Game-theoretically, adjusters allow betting running maximum of the gambler's wealth
 - A is an adjuster if and only if, in Protoco Skeptic has a betting strategy to ensure

$$\mathsf{A}(\mathscr{K}^*_{\mathsf{t}}) \leq \mathscr{K}'_{\mathsf{t}}.$$

g with the	Protocol 1 Competitive scepticism
0	$\mathcal{K}_0 := 1 \text{ and } \mathcal{K}'_0 := 1$
zh.	for $n = 1, 2,$ do
	Forecaster announces $\mathcal{E}_n \in \mathbf{E}$
ol 1, Rival	Sceptic announces $f_n \in [0,\infty]^{\mathcal{X}}$ such that $\mathcal{E}_n(f_n) \leq \mathcal{K}_{n-1}$
	Rival Sceptic announces $f'_n \in [0,\infty]^{\mathcal{X}}$ such that $\mathcal{E}_n(f'_n) \leq \mathcal{E}_n(f'_n)$
e that	Reality announces $x_n \in \mathcal{X}$
	$\mathcal{K}_n := f_n(x_n) \text{ and } \mathcal{K}'_n := f'_n(x_n)$
	end for

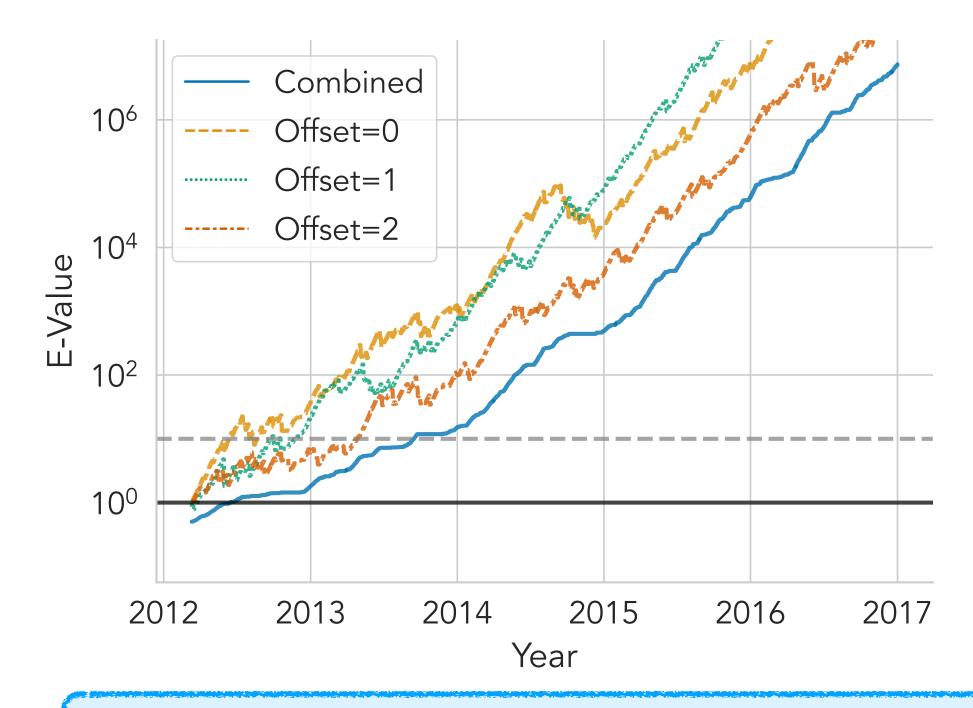


- Data: Precipitation data at four airport locations (Brussels, Frankfurt, London, & Zurich), 2007—2017. (Source: the European Centre of Medium-Range Weather Forecasts)
- Forecasting Task: Using the 2007—2012 data, make accurate probability forecasts for 2012—2017.
- Forecasting Methods:
 - Method #1: Isotonic Distributional Regression (IDR) Ensemble
 - Method #2: Heteroskedastic Censored Logistic Regression (HCLR) Ensemble
 - Baseline: Climatology (i.e., historical mean)
- **Evaluation:** Mean expected Brier score difference

Vannitsem et al. (2018); Henzi et al. (2021)

*<u>Note:</u> Only the "Combined" version is valid at data-dependent sample sizes

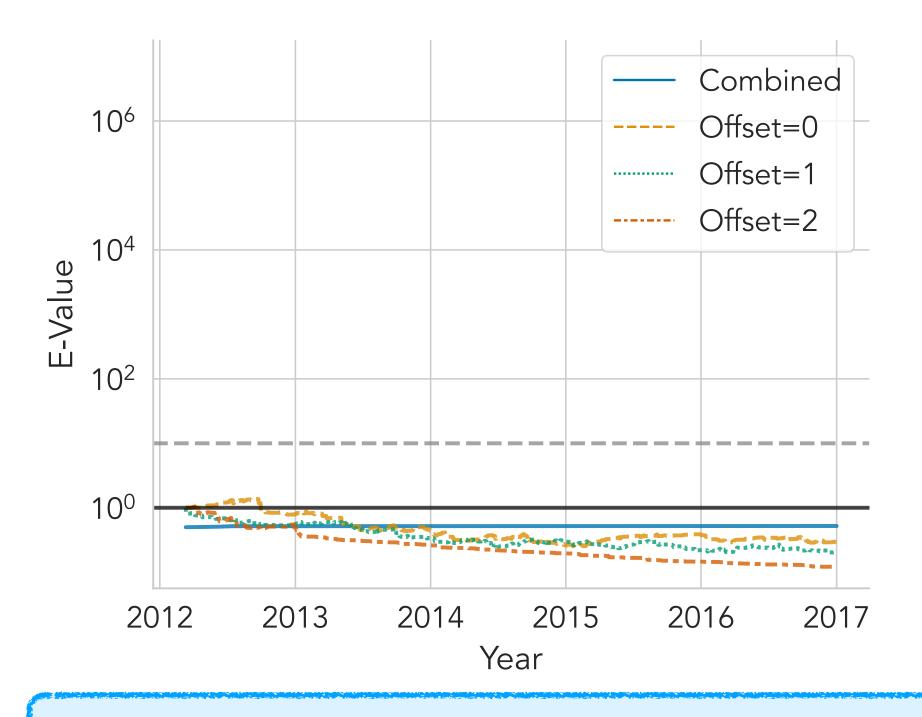
Comparison #1: IDR vs. Climatology



There is strong evidence to discredit Climatology over IDR. (passes the baseline)

Data: Precipitation in Zurich Airport

Comparison #2: IDR vs. HCLR



There isn't enough evidence to discredit HCLR over IDR. (consistent with prior findings)

End of Slides