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Evidence Measures for Anytime-Valid Inference
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What goes wrong when combining
e-processes !



Example: Testing Exchangeability

“Is your data stream actually random?”

e We want to sequentially test whether a binary stream of data X;, X,, .. .is exchangeable:

XN X, Xo, ... is exchangeable.
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000000101110001001110

010000110011100110100
001010001000101001000

* This is a composite null for which no nontrivial test martingales exist in the data filtration.

* (e)i>p is @ nontrivial e-process for testing randomness (“Is the data i.i.d.?"”) if and only if

it is a nontrivial e-process for testing exchangeability (Ramdas et al., IJAR 2022).



Example: Testing Exchangeability

“Is your data stream actually random?”

[t turns out that there are two different methods to construct an e-process for FPexh:;

mixture over Markov alternatives

1. Universal inference (Ul) e-process (Ramdas et al., 2022): ¢! =

maximum likelihood under null

e Powerful against Markovian alternatives.

e Anytime-valid w.r.t. the data ("full”) filtration F, &, = 6(Xq, ..., X)).

t

2. Conformal test martingale (Vovk, 2021): ef"”f — H

1
1+ 4 (pi — —>] , Where p; are conformal p-values.
=1

2

e Powerful against changepoint alternatives.

e This e-process is ONLY anytime-valid w.r.t. a coarse filtration G, &, = 6(p;, ..., py)!
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E-process

10

E-process
i

E-process w.r.t. a coarse filtration is NOT anytime-valid in the data filtration

Data: from i.i.d. Bernoulli.

7 = first time we observe five consecutive 0's.

Ul E-process

Over 10,000 repeated trials,

E-process
e Ul

Conformal

-o[e

1.0 1.5 2.0 2.5
Stopped e-value

conf] ~1.33 = 0.02.

T

(in general)

The conformal test martingale

| only has “restricted” T
anytime-validity, as

it does NOT allow stopping

w.r.t. the data filtration.



We can’t just average the two to obtain an e-process...

 What happens if we just try to take the average anyway?

m, = % (et” + efo"),  Vit.

e InTF, (M), is not an e-process because (e°™).. , is not F-anytime-valid, as we just saw.
e In G, (M), is also not an e-process because (e;"),q is not G-adapted.

* So, (My;>g is not an e-process w.r.t. either filtration.
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In fact, the average of randomized exchangeability martingales is not guaranteed
to be a randomized exchangeability martingale. Martingales in a fixed filtration
form a linear space, but different runs of the simplified Bayes—Kelly martingale are
martingales in different filtrations, as discussed earlier. Figure 9.14 suggests that the
averaged simplified Bayes—Kelly martingale is not an exchangeability martingale
any more.

From Section 9.3 (p. 296)



Example: Testing a Scale-Invariant Gaussian Mean
From Pérez-Ortiz et al. (2022)

e Suppose the data X;, X,, ... is sampled from ./ (u, 6°), and let § = u/c. Consider testing

%05=50 VS. %1:5=51.

° Let [Fbe the "full” data filtration, and let G denote the scale-invariant coarsening of [

X; Xy
g.=0 e .Vt
| X1 | X1

* In G, a GROW e-process (e,);~q Tor (# o, # 1) can be derived.

However, it is also shown that this e-process is not anytime-valid w.r.t. [

Ifz" =1+ 1(|X,| €[0.44,1.70]), then E[e <] ~ 1.19 > 1.
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Main Goal

How can we combine e-processes across different filtrations?

(Especially, if the e-process in the coarser filtration isnt valid in the finer one.)

11



p-litting & e-litting:
Litfting evidence across filtrations



p-lifting: P-processes can be lifted “freely”

Theorem (p-lifting). Suppose G C [, and let (p,)~o be a p-process for & w.r.t. (5. Then,

(Pi>0 IS @ p-process for &P w.r.t. .

e This result follows from the so-called lifting lemma, which is an extension of the
"equivalence lemma” (Ramdas et al., 2020; Howard et al., 2021) to pairs of filtrations.

* Essentially, any “probability statements” of anytime-validity translate across filtrations.

* |n contrast, analogous "“expectation statements” of anytime-validity do not translate.

13



The Equivalence Lemma
Ramdas et al. (2020); Howard et al. (2021)

Let ({)i>1 be a sequence of events adapted to a ftiltration G. (E.g., &, = {p, < a}.)

Given any probability P and any a € (0, 1), the following statements are equivalent:
(@) Time-uniform validity: P ( Ui>1 S ) <a.
(b) Random time validity: for any (possibly infinite) random time T, P(&7) < a.

(c) G-anytime-validity: for any (possibly infinite) G-stopping time & P(.¢) < a.
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The Lifting Lemma

Adaptation of the equivalence lemma to two filtrations

Let ({)i>1 be a sequence of events adapted to a sub-filtration G C .

Given any probability P and any a € (0, 1), the following statements are equivalent:

(a) G-anytime-validity: for any (possibly infinite) G-stopping time 7°, P(£.6) < a.

(b) F-anytime-validity: for any (possibly infinite) F-stopping time ' P.r) < a.

Implication: anytime-validity of any p-process w.r.t. G => anytime-validity w.r.t. F.
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e-lifting: Lifting e-processes via adjusters

Theorem (e-lifting). Let A be an adjuster (to be defined soon). Suppose G C F, and
- let (e,)>0 be an e-process for P w.r.t. . Then

<A(e’:k)>tzo is an e-process for & w.r.t. [ (e = sup,_.e))

Proot: 1. By Ville's inequality, p, = 1/e* is a p-process for & w.r.t. G.

2. By p-lifting, p, = 1/e¢* is also a p-process for & w.r.t. [.
3. The adjuster has a corresponding p-to-e calibrator C, such that A(e) = C(1/e), Ve > 1.

4. Thus, efdj = C(p,) = A(e[) is an e-process for &P w.r.t. [.
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Combining evidence across filtrations via e-lifting

Vv : anytime-valid
X : NOT anytime-valid |

Data Filtration & _ |

y &, = ye, + (1 —}’)A(e’*)
comblnmg evidence
(via averaging)

(A: adjuster)

- e- ||ft|ng

Sub Flltratlon 3}0
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o Admissible adjusters:
What are adjusters? o ) em 1~ log®
a.k.a. lookback adjusters & martingale calibrators 'sz(e)(z)
¢ 10
. . . . . kv(e) = gz
* An increasing, right-continuous function (1 + e)log™(1 +e)
A :[1,00] = [0, co] is an adjuster if it satisfies: Aqr(®) = v/ =
B A (e) =ke'*, k€ (0,1)
= A(e
J ( )de <1.
e | 107
10°
* |tis admissible if the above holds with equality ©
and A(o0) = oo. 10
10!

e Adjusters allow betting on the running maximum :
: : 107" ©
of a test supermartingale (or a capital process). 100 102 104 106 108 10"

18 Dawid et al. (2011a:b), Shater et al. (2011); Koolen & Vovk (2014)



Adjusters < P-to-E Calibrators

e A decreasing, left-continuous function C : [0, 1] — [0, co] is a (p-to-e) calibrator if
1
| compst.
0 |

* |tis admissible it the above holds with equality.

* There is a straightforward 1-to-1 correspondence between calibrators and adjusters.
Setting A(e) = C(1/¢), and by change-of-variables (p = 1/e),

00 00 1
J A(e)cle =J’ C(12/e)cIe :J Cpydp < 1.

2
1 € 1 ¢ 0 (=)

19 ct. Shafer et al. (2011); Vovk & Wang (2021)



Experiments & illustrative examples



Testing Exchangeability: Null Case

The lifted e-process is [-anytime-valid, so we can now combine it with the Ul e-process.

Data: from i.i.d. Bernoulli.
[F . f. o b f. o O,
T = TIrst time we opserve TIive consecutive Us.

Conformal E-process

101 o
Nol Histogram of stopped e-values at T/
(7)) o0 - I
N 42824 . p I
3 RN o\ ol L E-process
8 1 OO o : :HQ B ?. f‘e'.z :. p ®» 6000 : p
s e e . I : Conformal
L] o iiee N 5000 I : Lifted
107" ' ’, . | 5
: & 4000 | .
D)
. _ 0O |
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[
[
é 2000 =~ 1
O [
g_ 1000 ¢ I
. [
0o Ll 0 I
107 i o 0.0 0.5 1.0 15 2.0 25
0 20 10 40 Stopped e-value

Across 10,000 simulations, —P[A(ej})] ~0.47 < 1.
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Testing Exchangeability: Alternative Case

1
Combined (“eLift+Avg”): & = — et + A((e0")*)|

1010
E-process E-process
i U| —
104 108 Ul

----------- Conformal dee Conformal
’_(C'E eLift+Avg % 106 eLift+Avg
% 102 i
o o
O 2 104
a %
8 0 8 2
O 10 S 10
o 3
- 100

10—2 -
M PINGN
10 2 \\ ~~~~~~~~ "/‘. N wv
0 500 1000 1500 2000 0 500 1000 1500 2000
Time Time
Alternative #1: First-order Markov Alternative #2: Two changepoints

The combined e-process achieves power against both alternatives.
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Other topical examples in the literature

1. Multi-step forecast evaluation/comparison. When evaluating sequential forecasters making

their tforecasts h > 1 days ahead of time, we'd want to evaluate them conditioned on the

information that they had at the time of forecasting.

e Foreachoffsetk=1,...,h, there exists an e-process (e{k])tZO w.r.t. different coarsenings of

the data filtration, say Gl C

e To obtain an evaluation across all offsets, we would need to e-lift all h e-processes!

2. Sequential independence testing. For testing independence sequentially, there is no
nontrivial test martingale w.r.t. the data filtration (Henzi & Law, 2023).

e When combining e-processes for this null, existing e-processes have to be e-lifted.

"Henzi & Ziegel (2022); Arnold et al., (2022); Choe & Ramdas (2023)
?Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); Podkopaev et al. (2023); Henzi & Law (2023)
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Implications & new characterizations
of adjusters for e-processes



Implications on coarsening the filtration

1. Are there testing problems for which there is no powerful e-process in the data filtration, but

there exist ones in a coarser filtration?

e Unlike in the case of test supermartingales, e-lifting implies that the answer is nol!

* If there exists a powerful e-process (e,);~q for P w.r.t. some G C [, then we can e-lift it to

o Iflimsup,_ e, = oo under some @\, then limsup,  A(ef) = co under Q\ & (for any

admissible A), so the adjusted e-process is also powertful.

I

2. There appears to be an unavoidable cost to coarsening the filtration to obtain an e-process.

* The original e-process is not truly immune to “data peeking.”

* |t appears that it is necessary to sacrifice some of the evidence (via adjusters).

25



A Corollary on Coarsening the Filtration

Corollary. Let & be a composite null and let @ be a composite alternative.

Suppose there exists a @-powertul* e-process for & in a coarsened filtration & of .

Then, there exists a @-powerful e-process for & in [

*An e-process for & is @-powerful if, for any Q € G\ &, limsup,_, e, = oo, Q-almost surely.

* Interestingly, this is NOT the case if “e-process” is replaced with “test martingale”!
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Is adjusting the e-process the only way?

* Suppose you claim to have a function that, if | give you some e-process w.r.t. a coarse
filtration, then the function can transform it into an e-process w.r.t. the data filtration.
(The e-process can be tor any null w.r.t. any filtration.)

* |s the function necessarily an adjuster?

e Theorem (informal): The function is necessarily an adjuster, as long as it is an increasing

function that maps the running maximum e;* to some e; for each t.

27



A game-theoretic definition of adjusters

How can we make betting on the running maximum a “fair game”?

* An increasing function A is an adjuster if and only if,

for every test supermartingale (M,);> for some P,

there exists a test supermartingale (M)~ for P s.t. A is an “adjuster for test supermartingales”

AMF) < M, Vt.

e Game-theoretically, adjusters allow betting with the Frotocol I Competitive scepticism

Ko:=1and Kj :=1

running maximum of the gambler’s wealth. for n=1,2,... do
Forecaster announces &,, € E
: : : P : Sceptic announces f, € [0,00]% such that &,(fr) < Kn—-1
o
A is an adjuster if and only if, in Protocol 1, Rival Rival Sceptic announces £/ € [0, 00]¥ such that £.(f1) < K |
Skeptic has a betting strategy to ensure that Reality announces n € &
Kn = fo(z,) and K, := [, (zn)
1 p end for
ATF) < K}

28 Dawid et al. (2011a;b); Shater et al. (2011)



A Characterization Theorem for Adjusters

Theorem. Let A : [1, c0] — [0, co] be an increasing function. The following are equivalent:

A
(e)de
e

IA

(@) A is an adjuster, i.e., it satisfies J

(d) Ais an "e-lifter”: for any e-process (e,);~q for some P w.rt. G, and any finer filtration

F2 G, (A(e))i>o is an e-process for P w.r.t. [,

29



Takeaways



Takeaways

1. E-processes constructed on a coarse filtration are not anytime-valid in the data filtration,

so they cannot be combined seamlessly with other e-processes.
* Examples: testing exchangeability; independence; comparing multi-step forecasters
2. P-processes can be lifted freely across filtrations and retain their anytime-validity.
3. For e-processes, we can use adjusters to achieve validity in the data filtration.
4. In a sense, any function that lifts the anytime-validity ot an e-process must be an adjuster.
5. U-randomization can be applied after adjustment, but not before (w/o hurting validity).
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Example: Comparing Multi-Step Sequential Forecasters

* Suppose we compare two sequential forecasters with lag h using some scoring rule S w.rt. F = (F )0

1
Al = 9 Z[k] = [S(Py Yign—1) = S(ap Yirn—1) | Fiq|, Vk € [h].
€I}

e |[fh=2, AEO]/A,E” measures the average forecast score difference on even/odd days.

e When testing for the null ?/([)k] : A,Ek] < 0, Vt, for each offset k, we need to construct an e-process (QEk])tZO

under different coarsening of the filtration [ for each k (updates on every even/odd days).

Each (QEk])tzo is an e-process for 7/([)'(], but only w.r.t. the sub-filtration G!*! C .

e To test for the combined null 7, : AP(] < 0, Vt, Vk (an intersection), we want to e-lift all h e-processes

into the data filtration [F before combining them:

1 h
- k
& = z,A ((efD)*), Vt. Henzi & Ziegel (2022)
k=1

Arnold et al. (2022)
34 Choe & Ramdas (2023)



Example: Testing Independence

e @Given an i.i.d. stream of paired data Z, = (X,, Y,) ~ Pyxy, suppose we test it the joint
distribution factorizes:

e Similar to the exchangeability null, there exist no nontrivial test martingale adapted to
the data filtration [. Two known e-processes include:

* Pairwise betting (SR'23; PBKR'23; SR'24): adapted to the filtration w/ pairs ot data.

* Rank-based test martingale (HL'23): adapted to the filtration w/ rank stats ot data.

In this case, BOTH e-processes are constructed w.r.t. their own, non-overlapping sub-
filtrations. So we should litt both of them betore taking the average.

ct. Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023):
Podkopaev et al. (2023); Henzi & Law (2023)
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Randomized adjusters for e-lifting



Motivation: Randomized Calibrators

* In the case of (non-sequential) e-to-p calibration, it is known that p = 1/e is the only

admissible deterministic mapping.

* Recent papers show that there is the following “U-randomized” e-to-p calibrator can
dominate the deterministic variant (almost surely):

p = U/e, for some U = Unif[0, 1].

 Can we leverage this idea to develop a U-randomized adjuster?

37 ct. Ignatiadis et al. (2023); Ramdas & Manole (2023)



Strategy #1: Lift-then-randomize (“Itr")

o o [ ] [ ) *UMI.
This is possible via UMI! ’
P forany X > 0 and U = Unif[0, 1],

(x=2)
Pl X>— ) Za-E[X]

04
e ¢ Mhe A(e*) - _tanc. Bl = J A
(e—to—e) (e—to—p) A(e*)

e Once we lift an e-process by adjustment, we have an e-process in [F.

e So the randomization strategy still works: p!'" is a valid p-value for any F-stopping time

7, due to “UMI” (uniformly-randomized Markov's inequality; Ramdas & Manole, 2023).

e Since we end up with a p-value, this is only practically useful if the stopping rule p < a is
more lenient than the p-litted stopping rule of p. < a (w/o adjustment).
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Strategy #2: Randomize-then-lift (“rtl")

This does not guarantee anytime-validity (empirically, at least)

U>Unif[0.1] ¢ ‘ ¢

T T

rand. e—to—p ~ U p—to—e » U
e - pli=—A1l "— ert':=C<—/\1>

 Once we add the external r.v. U, the resulting sequence is not adapted to G!

e The U-lifting "lemma"”: It (e,),~q is an e-process for X w.r.t. G C [, U 2 Unif[0, 1], ana
a € (0,1), we have, for any F-stopping time 7 and any P € &,

P (P < a) = (eT > H) < a |Eple,] A (1+1og(1/a))].

04

T T
The UMI bound A loose type | error control
(Empirically observed,; using (non-randomized) Markov

~ 0.065 for conformal mtg.) (0.20ita=0.05)
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