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Evidence Measures for Anytime-Valid Inference
•  : filtration 
•  : any -stopping time

𝔾 = (𝒢𝗍)𝗍≥𝟢
τ 𝔾

cf. Ramdas, Grünwald, Shafer, & Vovk (Stat. Sci., 2023)

1.  is adapted to . 

2.  and . 

3. . 
 

(𝖬𝗍)𝗍≥𝟢 𝔾

𝖬𝟢 = 𝟣 𝖬𝗍 ≥ 𝟢, ∀𝗍

𝔼𝖯[𝖬𝗍 ∣ 𝒢𝗍−𝟣] ≤ 𝖬𝗍−𝟣, ∀𝗍

Test Supermartingale 
 for  w.r.t. (𝖬𝗍)𝗍≥𝟢 𝖯 𝔾

1.  is adapted to . 

2.  and . 

3. , 
for any -stopping time .

(𝔭𝗍)𝗍≥𝟢 𝔾

𝔭𝟢 = 𝟣 𝔭𝗍 ∈ [𝟢, 𝟣], ∀𝗍

𝖯(𝔭τ ≤ α) ≤ α, ∀𝖯 ∈ 𝒫, ∀α
𝔾 τ

P-Process 
 for  w.r.t. (𝔭𝗍)𝗍≥𝟢 𝒫 𝔾

1.  is adapted to . 

2.  and . 

3. ,  
for any -stopping time .

(𝔢𝗍)𝗍≥𝟢 𝔾

𝔢𝟢 = 𝟣 𝔢𝗍 ≥ 𝟢, ∀𝗍

𝔼𝖯[𝔢τ] ≤ 𝟣, ∀𝖯 ∈ 𝒫
𝔾 τ

E-Process 
 for  w.r.t. (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾

Optional Stopping  (Ville’s Inequality)𝔭𝗍 = 𝟣/𝔢*𝗍

 (P-to-E Calibration)𝔢𝗍 = 𝖢(𝔭𝗍)
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•  : point null 
•  : composite null

𝖯
𝒫



What goes wrong when combining 
e-processes across filtrations?



Example: Testing Exchangeability
“Is your data stream actually random?”

• We want to sequentially test whether a binary stream of data is exchangeable: 
 
 
 
 

• This is a composite null for which no nontrivial test martingales exist in the data filtration. 

•  is a nontrivial e-process for testing randomness (“Is the data i.i.d.?”) if and only if 
it is a nontrivial e-process for testing exchangeability (Ramdas et al., IJAR 2022).

𝖷𝟣, 𝖷𝟤, . . .

(𝔢𝗍)𝗍≥𝟢
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.𝒫𝖾𝗑𝖼𝗁 : 𝖷𝟣, 𝖷𝟤, . . . is exchangeable



Example: Testing Exchangeability
“Is your data stream actually random?”

It turns out that there are two different methods to construct an e-process for : 

1. Universal inference (UI) e-process (Ramdas et al., 2022): . 

• Powerful against Markovian alternatives.  

• Anytime-valid w.r.t. the data (“full”) filtration , . 

2. Conformal test martingale (Vovk, 2021): , where  are conformal p-values. 

• Powerful against changepoint alternatives. 

• This e-process is ONLY anytime-valid w.r.t. a coarse filtration , !

𝒫𝖾𝗑𝖼𝗁

𝔢𝖴𝖨
𝗍 =

mixture over Markov alternatives

maximum likelihood under null

𝔽 ℱ𝗍 = σ(𝖷𝟣, . . . , 𝖷𝗍)

𝔢𝖼𝗈𝗇𝖿
𝗍 =

𝗍

∏
𝗂=𝟣

[𝟣 + λ (𝗉𝗂 −
𝟣
𝟤 )] 𝗉𝗂

𝔾 𝒢𝗍 = σ(𝗉𝟣, . . . , 𝗉𝗍)
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E-process w.r.t. a coarse filtration is NOT anytime-valid in the data filtration
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Over 10,000 repeated trials,  .�̂�𝖯[𝔢𝖼𝗈𝗇𝖿
τ𝔽 ] ≈ 𝟣 . 𝟥𝟥 ± 𝟢 . 𝟢𝟤

Data: from i.i.d. Bernoulli. 
first time we observe five consecutive 0’s.τ𝔽 =

The conformal test martingale 

only has “restricted”  
anytime-validity, as  

it does NOT allow stopping 

w.r.t. the data filtration.

(in general)



We can’t just average the two to obtain an e-process…

• What happens if we just try to take the average anyway? 
 
 

• In ,  is not an e-process because  is not -anytime-valid, as we just saw. 

• In ,  is also not an e-process because  is not -adapted. 

• So,  is not an e-process w.r.t. either filtration.

𝔽 (𝗆𝗍)𝗍≥𝟢 (𝔢𝖼𝗈𝗇𝖿
𝗍 )𝗍≥𝟢 𝔽

𝔾 (𝗆𝗍)𝗍≥𝟢 (𝔢𝖴𝖨
𝗍 )𝗍≥𝟢 𝔾

(𝗆𝗍)𝗍≥𝟢
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.𝗆𝗍 =
𝟣
𝟤 (𝔢𝖴𝖨

𝗍 + 𝔢𝖼𝗈𝗇𝖿
𝗍 ), ∀𝗍
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From Section 9.3 (p. 296)



Example: Testing a Scale-Invariant Gaussian Mean
From Pérez-Ortiz et al. (2022)

• Suppose the data  is sampled from , and let . Consider testing 
 

• Let  be the “full” data filtration, and let  denote the scale-invariant coarsening of : 
 

• In , a GROW e-process  for  can be derived.  

However, it is also shown that this e-process is not anytime-valid w.r.t. : 
 

𝖷𝟣, 𝖷𝟤, . . . 𝒩(μ, σ2) δ = μ/σ

𝔽 𝔾 𝔽

𝔾 (𝔢𝗍)𝗍≥𝟢 (ℋ𝟢, ℋ𝟣)
𝔽
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.ℋ𝟢 : δ = δ𝟢 vs. ℋ𝟣 : δ = δ𝟣

.𝒢𝗍 = σ ( 𝖷𝟣

|𝖷𝟣 |
, . . . ,

𝖷𝗍

|𝖷𝟣 | ), ∀𝗍

If , then .τ𝔽 = 𝟣 + 1( |𝖷𝟣 | ∈ [𝟢 . 𝟦𝟦, 𝟣 . 𝟩𝟢]) 𝔼[𝔢τ𝔽] ≈ 𝟣 . 𝟣𝟫 > 𝟣



Main Goal
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How can we combine e-processes across different filtrations?

(Especially, if the e-process in the coarser filtration isn’t valid in the finer one.)



-lifting & -lifting:  
Lifting evidence across filtrations
𝔭 𝔢



• This result follows from the so-called lifting lemma, which is an extension of the 
“equivalence lemma” (Ramdas et al., 2020; Howard et al., 2021) to pairs of filtrations. 

• Essentially, any “probability statements” of anytime-validity translate across filtrations. 

• In contrast, analogous “expectation statements” of anytime-validity do not translate.

-lifting: P-processes can be lifted “freely”𝔭
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Theorem ( -lifting). Suppose , and let  be a p-process for  w.r.t. . Then,  

 w.r.t. .

𝔭 𝔾 ⊆ 𝔽 (𝔭𝗍)𝗍≥𝟢 𝒫 𝔾

(𝔭𝗍)𝗍≥𝟢 is a p-process for 𝒫 𝔽



The Equivalence Lemma
Ramdas et al. (2020); Howard et al. (2021)

Let  be a sequence of events adapted to a filtration . (E.g., .) 

Given any probability  and any , the following statements are equivalent: 

(a) Time-uniform validity: . 

(b) Random time validity: for any (possibly infinite) random time , . 

(c) -anytime-validity: for any (possibly infinite) -stopping time , .

(ξ𝗍)𝗍≥𝟣 𝔾 ξ𝗍 = {𝔭𝗍 ≤ α}

𝖯 α ∈ (𝟢, 𝟣)

𝖯 ( ∪𝗍≥𝟣 ξ𝗍 ) ≤ α

𝖳 𝖯(ξ𝖳) ≤ α

𝔾 𝔾 τ𝔾 𝖯(ξτ𝔾) ≤ α
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The Lifting Lemma
Adaptation of the equivalence lemma to two filtrations

Let  be a sequence of events adapted to a sub-filtration .  

Given any probability  and any , the following statements are equivalent: 

(a) -anytime-validity: for any (possibly infinite) -stopping time , . 

(b) -anytime-validity: for any (possibly infinite) -stopping time , . 

Implication: anytime-validity of any p-process w.r.t.  => anytime-validity w.r.t. .

(ξ𝗍)𝗍≥𝟣 𝔾 ⊆ 𝔽

𝖯 α ∈ (𝟢, 𝟣)

𝔾 𝔾 τ𝔾 𝖯(ξτ𝔾) ≤ α

𝔽 𝔽 τ𝔽 𝖯(ξτ𝔽) ≤ α

𝔾 𝔽
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1. By Ville’s inequality,  is a p-process for  w.r.t. . 

2. By -lifting,  is also a p-process for  w.r.t. . 

3. The adjuster has a corresponding p-to-e calibrator , such that .  

4. Thus,  is an e-process for  w.r.t. .

𝔭𝗍 = 𝟣/𝔢*𝗍 𝒫 𝔾

𝔭 𝔭𝗍 = 𝟣/𝔢*𝗍 𝒫 𝔽

𝖢 𝖠(𝔢) = 𝖢(𝟣/𝔢), ∀𝔢 ≥ 𝟣

𝔢𝖺𝖽𝗃
𝗍 = 𝖢(𝔭𝗍) = 𝖠(𝔢*𝗍 ) 𝒫 𝔽

-lifting: Lifting e-processes via adjusters𝔢
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Theorem ( -lifting). Let  be an adjuster (to be defined soon). Suppose , and        
let  be an e-process for  w.r.t. . Then 

 w.r.t. .

𝔢 𝖠 𝔾 ⊆ 𝔽
(𝔢𝗍)𝗍≥𝟢 𝒫 𝔾

(𝖠(𝔢*𝗍 ))𝗍≥𝟢
is an e-process for 𝒫 𝔽 ( )𝔢*𝗍 = 𝗌𝗎𝗉𝗂≤𝗍𝔢𝗂

Proof:



Combining evidence across filtrations via -lifting𝔢
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�̄�τ = γ𝔢τ + (𝟣 − γ)𝖠(𝔢′ *τ )} combining evidence 
(via averaging)𝖠(𝔢′ *τ )

-lifting𝔢
( : adjuster)𝖠

𝔢τ

Data Filtration ℱτ

𝔢′ τ

Sub-Filtration 𝒢τ

: anytime-valid 
: NOT anytime-valid



What are adjusters?
a.k.a. lookback adjusters & martingale calibrators
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• An increasing, right-continuous function 
 is an adjuster if it satisfies: 

 
 
 

• It is admissible if the above holds with equality 
and . 

• Adjusters allow betting on the running maximum 
of a test supermartingale (or a capital process). 

𝖠 : [𝟣, ∞] → [𝟢, ∞]

𝖠(∞) = ∞

Dawid et al. (2011a;b), Shafer et al. (2011); Koolen & Vovk (2014)

Admissible adjusters: 

 

 

   

, 

𝖠𝗆𝗂𝗑(𝔢) =
𝔢 − 𝟣 − 𝗅𝗈𝗀(𝔢)

𝗅𝗈𝗀𝟤(𝔢)

𝖠𝖪𝖵(𝔢) =
𝔢𝟤 𝗅𝗈𝗀(𝟤)

(𝟣 + 𝔢)𝗅𝗈𝗀𝟤(𝟣 + 𝔢)
𝖠𝗌𝗊𝗋𝗍(𝔢) = 𝔢 − 𝟣

𝖠κ(𝔢) = κ𝔢𝟣−κ κ ∈ (𝟢, 𝟣)

.∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 ≤ 𝟣



Adjusters  P-to-E Calibrators⟺
• A decreasing, left-continuous function  is a (p-to-e) calibrator if 

 
 
 

• It is admissible if the above holds with equality. 

• There is a straightforward 1-to-1 correspondence between calibrators and adjusters. 
Setting , and by change-of-variables ( ),

𝖢 : [𝟢, 𝟣] → [𝟢, ∞]

𝖠(𝔢) = 𝖢(𝟣/𝔢) 𝔭 = 𝟣/𝔢

19 cf. Shafer et al. (2011); Vovk & Wang (2021)

.∫
𝟣

𝟢
𝖢(𝔭)𝖽𝔭 ≤ 𝟣

.∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 = ∫
∞

𝟣

𝖢(𝟣/𝔢)
𝔢𝟤

𝖽𝔢 = ∫
𝟣

𝟢
𝖢(𝔭)𝖽𝔭 ≤

(=)
𝟣



Experiments & illustrative examples



Testing Exchangeability: Null Case
The lifted e-process is -anytime-valid, so we can now combine it with the UI e-process.𝔽

21

Across 10,000 simulations, .𝔼𝖯[𝖠(𝖾*τ𝔽)] ≈ 𝟢 . 𝟦𝟩 ≤ 𝟣

Data: from i.i.d. Bernoulli. 
first time we observe five consecutive 0’s.τ𝔽 =



Testing Exchangeability: Alternative Case
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Alternative #1: First-order Markov Alternative #2: Two changepoints

The combined e-process achieves power against both alternatives.

Combined (“eLift+Avg”): �̄�𝗍 =
𝟣
𝟤 [𝔢𝖴𝖨

𝗍 + 𝖠((𝔢𝖼𝗈𝗇𝖿
𝗍 )*)]



Other topical examples in the literature
1. Multi-step forecast evaluation/comparison. When evaluating sequential forecasters making 

their forecasts  days ahead of time, we’d want to evaluate them conditioned on the 
information that they had at the time of forecasting. 

• For each offset , there exists an e-process  w.r.t. different coarsenings of 

the data filtration, say . 

• To obtain an evaluation across all offsets, we would need to -lift all  e-processes! 

2. Sequential independence testing. For testing independence sequentially, there is no 
nontrivial test martingale w.r.t. the data filtration (Henzi & Law, 2023).  

• When combining e-processes for this null, existing e-processes have to be -lifted.

𝗁 > 𝟣

𝗄 = 𝟣, . . . , 𝗁 (𝖾[𝗄]
𝗍 )𝗍≥𝟢

𝔾[𝗄] ⊊ 𝔽

𝔢 𝗁

𝔢

23

1Henzi & Ziegel (2022); Arnold et al., (2022); Choe & Ramdas (2023)
2Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); Podkopaev et al. (2023); Henzi & Law (2023)



Implications & new characterizations 
of adjusters for e-processes



Implications on coarsening the filtration
1. Are there testing problems for which there is no powerful e-process in the data filtration, but 

there exist ones in a coarser filtration? 

• Unlike in the case of test supermartingales, -lifting implies that the answer is no! 

• If there exists a powerful e-process  for  w.r.t. some , then we can -lift it to .  

• If  under some , then  under  (for any 

admissible ), so the adjusted e-process is also powerful. 

2. There appears to be an unavoidable cost to coarsening the filtration to obtain an e-process. 

• The original e-process is not truly immune to “data peeking.” 

• It appears that it is necessary to sacrifice some of the evidence (via adjusters).

𝔢

(𝔢𝗍)𝗍≥𝟢 𝒫 𝔾 ⊆ 𝔽 𝔢 𝔽

𝗅𝗂𝗆𝗌𝗎𝗉𝗍→∞𝔢𝗍 = ∞ 𝒬∖𝒫 𝗅𝗂𝗆𝗌𝗎𝗉𝗍→∞𝖠(𝔢*𝗍 ) = ∞ 𝒬∖𝒫
𝖠
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Is adjusting the e-process the only way?
• Suppose you claim to have a function that, if I give you some e-process w.r.t. a coarse 

filtration, then the function can transform it into an e-process w.r.t. the data filtration.  
(The e-process can be for any null w.r.t. any filtration.) 

• Is the function necessarily an adjuster?  

• Theorem (informal): The function is necessarily an adjuster, as long as it is an increasing 

function that maps the running maximum  to some  for each .𝔢*𝗍 𝔢′ 𝗍 𝗍
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A game-theoretic definition of adjusters
How can we make betting on the running maximum a “fair game”?
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• An increasing function  is an adjuster if and only if, 
for every test supermartingale  for some , 
there exists a test supermartingale  for  s.t. 
 
 

• Game-theoretically, adjusters allow betting with the 
running maximum of the gambler’s wealth.  

•  is an adjuster if and only if, in Protocol 1, Rival 
Skeptic has a betting strategy to ensure that  

. 

𝖠
(𝖬𝗍)𝗍≥𝟢 𝖯

(𝖬′ 𝗍)𝗍≥𝟢 𝖯

𝖠

𝖠(𝒦*𝗍 ) ≤ 𝒦′ 𝗍

Dawid et al. (2011a;b); Shafer et al. (2011)

.𝖠(𝖬*𝗍 ) ≤ 𝖬′ 𝗍, ∀𝗍

 is an “adjuster for test supermartingales”𝖠



A Characterization Theorem for Adjusters
Theorem. Let  be an increasing function. The following are equivalent: 

(a)  is an adjuster, i.e., it satisfies . 

(b)  is an “adjuster for test supermartingales” (previous slide). 

(c)  is an “adjuster for e-processes”: for any e-process  for some  w.r.t. , there 

exists another e-process  for  w.r.t.  such that, for all , . 

(d)  is an “ -lifter”: for any e-process  for some  w.r.t. , and any finer filtration 

,  is an e-process for  w.r.t. . 

(e) For any e-process  for some  w.r.t. ,  is an e-process for  w.r.t. .

𝖠 : [𝟣, ∞] → [𝟢, ∞]

𝖠 ∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 ≤ 𝟣

𝖠

𝖠 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
(𝔢′ 𝗍)𝗍≥𝟢 𝒫 𝔾 𝗍 𝖠(𝔢*𝗍 ) ≤ 𝔢′ 𝗍

𝖠 𝔢 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
𝔽 ⊇ 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫 𝔽

(𝔢𝗍)𝗍≥𝟢 𝒫 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫 𝔾
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Theorem. Let  be an increasing function. The following are equivalent: 

(a)  is an adjuster, i.e., it satisfies . 

(b)  is an “adjuster for test supermartingales” (previous slide). 

(c)  is an “adjuster for e-processes”: for any e-process  for some  w.r.t. , there 

exists another e-process  for  w.r.t.  such that, for all , . 

(d)  is an “ -lifter”: for any e-process  for some  w.r.t. , and any finer filtration 

,  is an e-process for  w.r.t. . 

(e) For any e-process  for some  w.r.t. ,  is an e-process for  w.r.t. .

𝖠 : [𝟣, ∞] → [𝟢, ∞]

𝖠 ∫
∞

𝟣

𝖠(𝔢)
𝔢𝟤

𝖽𝔢 ≤ 𝟣

𝖠

𝖠 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
(𝔢′ 𝗍)𝗍≥𝟢 𝒫 𝔾 𝗍 𝖠(𝔢*𝗍 ) ≤ 𝔢′ 𝗍

𝖠 𝔢 (𝔢𝗍)𝗍≥𝟢 𝒫 𝔾
𝔽 ⊇ 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫 𝔽

(𝔢𝗍)𝗍≥𝟢 𝒫 𝔾 (𝖠(𝔢*𝗍 ))𝗍≥𝟢 𝒫 𝔾



Takeaways



Takeaways
1. E-processes constructed on a coarse filtration are not anytime-valid in the data filtration, 

so they cannot be combined seamlessly with other e-processes. 

• Examples: testing exchangeability; independence; comparing multi-step forecasters 

2. P-processes can be lifted freely across filtrations and retain their anytime-validity. 

3. For e-processes, we can use adjusters to achieve validity in the data filtration. 

4. In a sense, any function that lifts the anytime-validity of an e-process must be an adjuster. 

5. U-randomization can be applied after adjustment, but not before (w/o hurting validity).
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Thank You
ArXiv: https://arxiv.org/abs/2402.09698 
Code: to be available soon 
YJ: https://yjchoe.github.io/ 
Aaditya: https://www.stat.cmu.edu/~aramdas/ 

Questions?

https://arxiv.org/abs/2402.09698
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https://www.stat.cmu.edu/~aramdas/
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Example: Comparing Multi-Step Sequential Forecasters
• Suppose we compare two sequential forecasters with lag  using some scoring rule  w.r.t. : 

 

• If , /  measures the average forecast score difference on even/odd days. 

• When testing for the null , for each offset , we need to construct an e-process  

under different coarsening of the filtration  for each  (updates on every even/odd days). 

• To test for the combined null  (an intersection), we want to -lift all  e-processes 

into the data filtration  before combining them:

𝗁 𝖲 𝔽 = (ℱ𝗍)𝗍≥𝟢

𝗁 = 𝟤 Δ[𝟢]
𝗍 Δ[𝟣]

𝗍

ℋ[𝗄]
𝟢 : Δ[𝗄]

𝗍 ≤ 𝟢, ∀𝗍 𝗄 (𝔢[𝗄]
𝗍 )𝗍≥𝟢

𝔽 𝗄

ℋ𝟢 : Δ[𝗄]
𝗍 ≤ 𝟢, ∀𝗍, ∀𝗄 𝔢 𝗁

𝔽

33

Each  is an e-process for , but only w.r.t. the sub-filtration .(𝔢[𝗄]
𝗍 )𝗍≥𝟢 ℋ[𝗄]

𝟢 𝔾[𝗄] ⊊ 𝔽

Henzi & Ziegel (2022) 
Arnold et al. (2022)  

Choe & Ramdas (2023)

.Δ[𝗄]
𝗍 =

𝟣
|𝖨[𝗄]

𝗍 | ∑
𝗂∈𝖨[𝗄]

𝗍

𝔼 [𝖲(𝗉𝗂, 𝗒𝗂+𝗁−𝟣) − 𝖲(𝗊𝗂, 𝗒𝗂+𝗁−𝟣) ∣ ℱ𝗂−𝟣], ∀𝗄 ∈ [𝗁]

.�̄�𝗍 =
𝟣
𝗁

𝗁

∑
𝗄=𝟣

𝖠 ((𝔢[𝗄]
𝗍 )*), ∀𝗍



Example: Testing Independence
• Given an i.i.d. stream of paired data , suppose we test if the joint 

distribution factorizes: 

• Similar to the exchangeability null, there exist no nontrivial test martingale adapted to 
the data filtration . Two known e-processes include: 

• Pairwise betting (SR’23; PBKR’23; SR’24): adapted to the filtration w/ pairs of data. 

• Rank-based test martingale (HL’23): adapted to the filtration w/ rank stats of data. 

• In this case, BOTH e-processes are constructed w.r.t. their own, non-overlapping sub-
filtrations. So we should lift both of them before taking the average.

𝖹𝗍 = (𝖷𝗍, 𝖸𝗍) ∼ 𝖯𝖷𝖸

𝔽
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.ℋ𝟢 : 𝖯𝖷𝖸 = 𝖯𝖷 × 𝖯𝖸 vs. ℋ𝟣 : 𝖯𝖷𝖸 ≠ 𝖯𝖷 × 𝖯𝖸

cf. Balasubramani & Ramdas (2016); Shekhar & Ramdas (2023); 
Podkopaev et al. (2023); Henzi & Law (2023)



Randomized adjusters for -lifting𝔢



Motivation: Randomized Calibrators
• In the case of (non-sequential) e-to-p calibration, it is known that  is the only 

admissible deterministic mapping. 

• Recent papers show that there is the following “U-randomized” e-to-p calibrator can 
dominate the deterministic variant (almost surely): 

• Can we leverage this idea to develop a U-randomized adjuster?

𝗉 = 𝟣/𝖾
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, for some .�̃� = 𝖴/𝖾 𝖴 ≳ 𝖴𝗇𝗂𝖿[𝟢, 𝟣]

cf. Ignatiadis et al. (2023); Ramdas & Manole (2023)



Strategy #1: Lift-then-randomize (“ltr”)
This is possible via UMI!

• Once we lift an e-process by adjustment, we have an e-process in . 

• So the randomization strategy still works:  is a valid p-value for any -stopping time 
, due to “UMI” (uniformly-randomized Markov’s inequality; Ramdas & Manole, 2023).  

• Since we end up with a p-value, this is only practically useful if the stopping rule  is 
more lenient than the -lifted stopping rule of  (w/o adjustment).

𝔽

�̃�𝗅𝗍𝗋
τ 𝔽

τ

�̃�𝗅𝗍𝗋
τ ≤ α

𝔭 𝔭τ ≤ α
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𝔢τ
𝔢−𝗅𝗂𝖿𝗍𝗂𝗇𝗀
⟶

(𝖾−𝗍𝗈−𝖾)
𝖠(𝔢*τ ) 𝖴−𝗋𝖺𝗇𝖽.⟶

(𝖾−𝗍𝗈−𝗉)
�̃�𝗅𝗍𝗋

τ =
𝖴

𝖠(𝔢*τ )
∧ 𝟣

*UMI:  
for any  and , 

.

𝖷 ≥ 𝟢 𝖴 ≳ 𝖴𝗇𝗂𝖿[𝟢, 𝟣]

𝖯 (𝖷 ≥
𝖴
α ) ≤ α ⋅ 𝔼[𝖷]



• Once we add the external r.v. , the resulting sequence is not adapted to ! 

• The U-lifting “lemma”: If  is an e-process for  w.r.t. , , and 
, we have, for any -stopping time  and any , 

𝖴 𝔾

(𝔢𝗍)𝗍≥𝟢 𝒫 𝔾 ⊆ 𝔽 𝖴 ≳ 𝖴𝗇𝗂𝖿[𝟢, 𝟣]
α ∈ (𝟢, 𝟣) 𝔽 τ 𝖯 ∈ 𝒫

Strategy #2: Randomize-then-lift (“rtl”)
This does not guarantee anytime-validity (empirically, at least)
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𝔢τ
𝗋𝖺𝗇𝖽. 𝖾−𝗍𝗈−𝗉

⟶
𝖴≳𝖴𝗇𝗂𝖿[𝟢,𝟣]

�̃�𝗋𝗍𝗅
τ :=

𝖴
𝔢τ

∧ 𝟣
𝗉−𝗍𝗈−𝖾
⟶ �̃�𝗋𝗍𝗅

τ := 𝖢 ( 𝖴
𝔢τ

∧ 𝟣)

.𝖯 (�̃�𝗋𝗍𝗅
τ ≤ α) = 𝖯 (𝔢τ ≥

𝖴
α ) ≤ α [𝔼𝖯[𝔢τ] ∧ (𝟣 + log(𝟣/α))]

↑ 
The UMI bound  

(Empirically observed; 
 for conformal mtg.)≈ 𝟢 . 𝟢𝟨𝟧

↑ 
A loose type I error control  
using (non-randomized) Markov  
(  if  ) ≈ 𝟢 . 𝟤𝟢 α = 𝟢 . 𝟢𝟧
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