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Why Compare Forecasters?

2

Which one is better?



Forecast Comparison (or Evaluation) Has a Long History
including a long line of work from our very own department:
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But Is It Still a Relevant Problem?
If anything, it matters even more in modern ML.
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Figure from Varoquaux and Cheplygina (2022).

“[…] overall medical imaging research seldom analyzes 
how likely empirical results are to be due to chance: 
only 6% of segmentation challenges surveyed1, and 
15% out of 410 popular computer science papers 

published by ACM2 use a statistical test.”

1Maier-Hein et al. (2018)

2Cockburn et al. (2020)



Forecast Comparison Meets  
Anytime-Valid Sequential Inference



Comparing Sequential Forecasters
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Is one of the forecasters actually better than the other?


Can we answer this question repeatedly over time, and  
without making assumptions on the outcomes/forecasters?

Probability forecasts, differences, and outcomes for the 2019 World Series.

Forecasts are provided as win percentages (%) for WSN.

2019 World Series 
(WSN vs. HOU)

Game 1 2 3 4 5 6 7

FiveThirtyEight 38% 41% 53% 59% 37% 41% 48%

Vegas Betting Odds 35% 38% 41% 51% 34% 37% 43%

Difference 3% 3% 12% 8% 3% 4% 5%

WSN Result Win Win Loss Loss Loss Win Win



Forecast Comparison as an Inference Problem
Especially Popular in Meteorology, Economics and Finance

• Diebold and Mariano (1995)


• Asymptotic & exact finite-sample tests of equal forecast performance, assuming stationarity.


• Giacomini and White (2006)


• Asymptotic tests of equal conditional forecast performance; allows non-stationarity (requires mixing).


• Lai et al. (2011)


• Asymptotic tests of average scores & score differentials that have linear equivalents.


• Henzi and Ziegel (2021)


• Valid sequential inference of conditional forecast dominance via e-processes.
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A Game-Theoretic Setup
Let  (e.g., ) denote the space of probability distributions on an outcome space  (e.g., ).


Consider the following protocol involving two forecasters:


Game (Comparing Sequential Forecasters). For rounds 


1. Forecaster 1 makes their probability forecast, .


2. Forecaster 2 makes their probability forecast, . 
(Steps 1 and 2 are in an arbitrary order.)


3. Reality chooses a probability .  
(Note that  is not revealed to the forecasters.)


4.  is sampled and revealed.


How do we derive a valid sequential inference approach for comparing these two forecasters?

𝒫 [𝟢, 𝟣] 𝒴 {𝟢, 𝟣}

𝗍 = 𝟣, 𝟤, . . . :

𝗉𝗍 ∈ 𝒫

𝗊𝗍 ∈ 𝒫

𝗋𝗍 ∈ Δ(𝒴)
𝗋𝗍

𝗒𝗍 ∼ 𝗋𝗍

8 cf. Shafer & Vovk (2005; 2019); Lai et al. (2011); Henzi & Ziegel (2021)

 are predictable w.r.t. .

(i.e.,  is the only source of randomness)

𝗉𝗍, 𝗊𝗍, 𝗋𝗍 𝒢t
𝗒𝗍 ∼ 𝗋𝗍

Game Filtration 𝒢𝗍−𝟣



Desiderata
1. Time-Uniform & Anytime-Valid: validity under continuous 

monitoring and at all (data-dependent) stopping times.


• Can we update our conclusions as-we-go, without sacrificing 
validity?


2. “Distribution-Free”: no assumptions on (the dynamics of) .


• The dynamics of real-world outcomes are probably not 
stationary or Markovian.


3. Model-Free: No assumptions on the forecasts  and .


• We do not know the forecasting models of AccuWeather or 
Vegas betting odds.


4. Estimation/Test of the Average Conditional Predictive Ability:


• Which forecaster has usually outperformed the other so far?

(𝗋𝗍)𝗍≥𝟣

(𝗉𝗍)𝗍≥𝟣 (𝗊𝗍)𝗍≥𝟣
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Game (Comparing Sequential Forecasters).  
 
For rounds 


1. Forecaster 1 makes their probability 
forecast, .


2. Forecaster 2 makes their probability 
forecast, . 
(Steps 1 and 2 are in an arbitrary order.)


3. Reality chooses a probability .  
(Note that  is not revealed to the 
forecasters.)


4.  is sampled and revealed.

𝗍 = 𝟣, 𝟤, . . . :

𝗉𝗍 ∈ 𝒫

𝗊𝗍 ∈ 𝒫

𝗋𝗍 ∈ Δ(𝒴)
𝗋𝗍

𝗒𝗍 ∼ 𝗋𝗍



SAVI Against Statistical Malpractice
• Classical inference methods (e.g., p-values & confidence intervals) do NOT guarantee validity under continuous monitoring 

and at data-dependent stopping times. (Susceptible to “p-hacking.”)


• Safe, Anytime-Valid Inference (SAVI) approaches (Ramdas et al., 2022) have statistical guarantees at arbitrary stopping 
times, including data-dependent sample sizes. Confidence sequences (CS), in particular, can also be monitored continuously.


• These methods are particularly suitable for sequential settings, composite nulls, and settings under weaker assumptions. 


• Examples: sequential tests, e-processes, p-processes, and confidence sequences.
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Classical SAVI

Inference at Any Stopping Time 
(“peeking”)

Invalid 
(requires correction)

Valid

Imprecise Probabilities 
(e.g., composite nulls)

No / Tricky Yes

Game-Theoretic Interpretation No Yes

cf. Ville (1939); Wald (1945); Darling and Robbins (1967); Lai (1976); … 

Ramdas, Grünwald, Vovk, and Shafer (2022): recent survey w/ many more references.

https://arxiv.org/abs/2210.01948


Evaluating Forecasters via Scoring Rules
• Given a probabilistic forecast  for an outcome ,  

a scoring rule  is any (quasi-integrable) function that assesses forecast quality.


• Throughout this talk, higher scores imply better forecasts.


• A proper scoring rule elicits honest forecasts, and it measures both the calibration and sharpness of the forecaster.


• Formally,  is proper if . It is strictly proper when equality  .

𝗉 ∈ 𝒫 𝗒 ∈ 𝒴
𝖲 : 𝒫 × 𝒴 → ℝ ∪ {−∞}

𝖲 𝔼𝗒∼𝗊[𝖲(𝗊, 𝗒)] ≥ 𝔼𝗒∼𝗊[𝖲(𝗉, 𝗒)], ∀𝗉, 𝗊 ∈ 𝒫 ⇔ 𝗉 = 𝗊

11
cf. Gneiting and Katzfuss (2014); Dawid & Musio (2014); Gneiting and Raftery (2007);  
Winkler et al. (1996); Schervish (1989); Dawid (1986); Savage (1971); Brier (1950); …

Brier

Accuracy / Zero-One 
(proper but not strictly proper)

Winkler Score 
(relative to forecaster q)

𝖲(𝗉, 𝗒) = 𝟣 − (𝗉 − 𝗒)𝟤

𝖲(𝗉, 𝗒) = 1(𝗉 ≥ 𝟢 . 𝟧)𝗒 + 1(𝗉 < 𝟢 . 𝟧)(𝟣 − 𝗒)

𝖶(𝗉, 𝗒; 𝗊) =
𝖲(𝗉, 𝗒) − 𝖲(𝗊, 𝗒)

𝖲(𝗉, 1(𝗉 ≥ 𝗊)) − 𝖲(𝗊, 1(𝗉 < 𝗊))

Examples of proper scoring rules for binary forecasts.



Comparing Forecasts via Average Score Differentials

Let S be a scoring rule. The average score differential  between forecasts  and 
 is a time-varying parameter quantifying the expected difference in forecast quality 

up to time :


,


where  is the conditional expectation w.r.t. .


Goal: Estimate  at any time . (alternatively, test if  for all times ). 

Δ𝗍 (𝗉𝗂)𝗂≤𝗍
(𝗊𝗂)𝗂≤𝗍

𝗍

Δ𝗍 =
𝟣
𝗍

𝗍

∑
𝗂=𝟣

𝔼𝗂−𝟣[𝖲(𝗉𝗂, 𝗒𝗂) − 𝖲(𝗊𝗂, 𝗒𝗂)]

𝔼𝗂−𝟣[ ⋅ ] = 𝔼[ ⋅ ∣ 𝒢𝗂−𝟣] 𝗒𝗂 ∼ 𝗋𝗂

Δ𝗍 𝗍 𝖧𝟢 : Δ𝗍 ≤
(≥)

𝟢 𝗍
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,Δ𝗍 =
𝟣
𝗍

𝗍

∑
𝗂=𝟣

𝔼𝗂−𝟣[𝖲(𝗉𝗂, 𝗒𝗂) − 𝖲(𝗊𝗂, 𝗒𝗂)]



Let  be a sequence of parameters indexed by time.


A -level confidence sequence (CS)  for  is a 
sequence of confidence intervals (CI) that has a uniform coverage 
guarantee over time (“time-uniform”):


 
 
The coverage guarantee is also valid at arbitrary & data-
dependent stopping times (“anytime-valid”). E.g., collecting 
additional data after estimation does not invalidate the guarantee.


This is not true for the usual, fixed-time CI , which only has 
coverage guarantees at a fixed sample size :  

(θ𝗍)𝗍≥𝟣

(𝟣 − α) (𝖢𝗍)𝗍≥𝟣 (θ𝗍)𝗍≥𝟣

𝖢𝗇
𝗇

.ℙ(∀𝗍 ≥ 𝟣 : θ𝗍 ∈ 𝖢𝗍) ≥ 𝟣 − α

Confidence Sequences for Estimating Time-Varying Parameters

13cf. Darling and Robbins (1967); Howard et al. (2021)

.∀𝗇 ≥ 𝟣, ℙ(θ𝗇 ∈ 𝖢𝗇) ≥ 𝟣 − α

The fixed-time CI does not have a time-uniform 
coverage guarantee. A 95% CS has a cumulative 
miscoverage rate of  (zero in the above).≤ 𝟢 . 𝟢𝟧

*Cumulative Miscoverage Rate:  
(averaged over repeated simulations)

ℙ(∃𝗂 ≤ 𝗍 : θ𝗂 ∉ 𝖢𝗂)



• Asymptotically Zero Width. The width of the CS shrinks to zero, at a  rate, achieving 

the same rate as a fixed-time CI up to logarithmic factors.


• Variance-Adaptivity. The width of this CS shrinks quickly as the variance stabilizes.

𝖮( 𝗍−𝟣 𝗅𝗈𝗀 𝗅𝗈𝗀 𝗍)

Main Result 1: CSs for Sequential Forecast Comparison
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Theorem (Empirical Bernstein CS). Let  and . Suppose that  are bounded a.s. for 

each . Then, for each ,


,


where  denotes an empirical variance term and  is a constant.

̂δ𝗂 = 𝖲(𝗉𝗂, 𝗒𝗂) − 𝖲(𝗊𝗂, 𝗒𝗂) Δ̂𝗍 =
𝟣
𝗍

𝗍

∑
𝗂=𝟣

̂δ𝗂 | ̂δ𝗂 |

𝗂 ≥ 𝟣 α ∈ (𝟢, 𝟣)

𝖢𝗍 := Δ̂𝗍 ± 𝖼α ⋅
𝖵̂𝗍 𝗅𝗈𝗀 𝗅𝗈𝗀 𝖵̂𝗍

𝗍
forms a (𝟣 − α)-level CS for Δ𝗍

𝖵̂𝗍 =
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − Δ̂𝗂−𝟣)𝟤 𝖼α ≍ 𝗅𝗈𝗀(𝟣/α)

cf. Howard et al. (2020; 2021) 



Now consider the following (composite) null hypothesis:


.𝖧𝟢 : Δ𝗍 ≤ 𝟢, ∀𝗍 ≥ 𝟣

Main Result 2: E-Processes for Testing 𝖧𝟢 : Δ𝗍 ≤ 𝟢

15
cf. Shafer (2011); Grünwald et al. (2019);  

Vovk and Wang (2021); Ramdas et al. (2022) 

An e-process  for  is a sequence of nonnegative random variables such that:


.

(𝖤𝗍)𝗍≥𝟢 𝖧𝟢

for any stopping time τ, 𝔼𝖧𝟢
[𝖤τ] ≤ 𝟣

Theorem (E-Process; Informal). Assume the same conditions as the previous Theorem.  
Given the null , there exists an e-process that corresponds to the (UCB of) the EB CS.𝖧𝟢 : Δ𝗍 ≤ 𝟢, ∀𝗍

Game-Theoretic 
Interpretation:


“The wealth of a gambler 
that bets against .“


(You’re expected to lose 
money if  is true & 

win money otherwise.)

𝖧𝟢

𝖧𝟢

An e-process measures the amount of accumulated evidence against the null hypothesis.  
If I observe an e-value (a realization at some stopping time ) of 100, I would know that, if  were true, the 
chance of it happening is at most 1% by Markov’s inequality (or, in the sequential case, by Ville’s inequality).

τ 𝖧𝟢



What’s “Game-Theoretic” About It?
• Recall that a supermartingale  w.r.t. a distribution  (think: a point 

null) satisfies .


• A nonnegative supermartingale (NSM) for  is the wealth of a gambler 
who bets on a game with odds determined (possibly unfairly) w.r.t. .


• An e-process for a set of distributions  (think: composite null) is any 
nonnegative process that is upper-bounded by a NSM for every .


• An e-process for  is the minimum wealth of a gambler who places 
bets on all games determined by .


• Game-theoretic statistics sits in between game-theoretic probability and 
online learning, with a focus on valid inference under weaker 
assumptions.


• Key references include Shafer; Grünwald; Ramdas et al.;  
Earlier references include Wald, Robbins, Darling, Siegmund, and Lai.

(𝖫𝗍)𝗍≥𝟢 𝖯
𝔼𝖯[𝖫𝗍 ∣ 𝒢𝗍−𝟣] = 𝖫𝗍−𝟣 ∀𝗍 ≥ 𝟣

𝖯
𝖯

𝒫
𝖯 ∈ 𝒫

𝒫
𝖯 ∈ 𝒫

16



Experiments



Comparing Major League Baseball Forecasters
FiveThirtyEight vs. Vegas betting odds, using the Brier score

18
Data: Every MLB game’s win/loss outcomes from 2010 to 2019. 
See paper for further experiment details.

40 (=1/0.025)↑Favors 538

↓Favors Vegas
Evidence for  



Evidence for  




Comparing Ensemble Weather Forecasts
Experiment Adapted from Henzi & Ziegel (2022).

19Data: ECMWF; Henzi et al. (2021)



Simulated Experiments
CSs Uniformly Cover Time-Varying Means; EB CS (Variance-Adaptive) Is Tighter.
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Simulated Experiments
E-Processes for p and q Match the LCB and UCB of EB CS Crossing the Zero Line.

21

1/0.05



Simulated Experiments
Fixed-Time CI Does Not Have the Time-Uniform Coverage Guarantee of CS.

22Fixed-time CI is based on the martingale CLT (Lai et al., 2011).

*Cumulative Miscoverage Rate:  
(averaged over repeated simulations)

ℙ(∃𝗂 ≤ 𝗍 : Δ𝗂 ∉ 𝖢𝗂)



Some Theory



• Asymptotically Zero Width. The width of the CS shrinks to zero, at a  rate, achieving 

the same rate as a fixed-time CI up to logarithmic factors.


• Variance-Adaptivity. The width of this CS shrinks quickly as the variance stabilizes.

𝖮( 𝗍−𝟣 𝗅𝗈𝗀 𝗅𝗈𝗀 𝗍)

Main Result 1: CSs for Sequential Forecast Comparison

24

Theorem (Empirical Bernstein CS). Let  and . Suppose that  are bounded a.s. for 

each . Then, for each ,


,


where  denotes an empirical variance term and  is a constant.

̂δ𝗂 = 𝖲(𝗉𝗂, 𝗒𝗂) − 𝖲(𝗊𝗂, 𝗒𝗂) Δ̂𝗍 =
𝟣
𝗍

𝗍

∑
𝗂=𝟣

̂δ𝗂 | ̂δ𝗂 |

𝗂 ≥ 𝟣 α ∈ (𝟢, 𝟣)

𝖢𝗍 := Δ̂𝗍 ± 𝖼α ⋅
𝖵̂𝗍 𝗅𝗈𝗀 𝗅𝗈𝗀 𝖵̂𝗍

𝗍
forms a (𝟣 − α)-level CS for Δ𝗍

𝖵̂𝗍 =
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − Δ̂𝗂−𝟣)𝟤 𝖼α ≍ 𝗅𝗈𝗀(𝟣/α)

cf. Howard et al. (2020; 2021) 



• Method of Mixtures for E-Processes (& CSs). For any distribution  on , the mixture  

is also an e-process. (  can be chosen to be a “conjugate” distribution such that  has a closed form.)


• P-Process (Anytime-valid p-value). If you’d prefer getting a p-value, then the e-process can be converted into a p-
process via  or .

𝖥 [𝟢, λ𝗆𝖺𝗑) 𝖤𝗆𝗂𝗑
𝗍 (𝖥) := ∫ 𝖤𝗍(λ)𝖽𝖥(λ)

𝖥 𝖤𝗆𝗂𝗑
𝗍 (𝖥)

𝗉𝗍 = 𝖤−𝟣
𝗍 𝗉𝗍 = (max𝗂≤𝗍𝖤𝗂)−𝟣

Main Result 2 (More Formally): E-Processes for Testing 𝖧𝟢 : Δ𝗍 ≤ 𝟢

25

Theorem (E-Process). Assume the same conditions* as the previous Thm. Then, for each , 


,


where  (“the sub-exponential CGF”). 

λ ∈ [𝟢, λ𝗆𝖺𝗑)

𝖤𝗍(λ) := 𝖾𝗑𝗉 {λ𝗍Δ̂𝗍 − ψ𝖤(λ)𝖵̂𝗍} is an e-process for 𝖧𝟢 : Δ𝗍 ≤ 𝟢, ∀𝗍

ψ𝖤(λ) = − 𝗅𝗈𝗀(𝟣 − λ) − λ

*In the case of e-processes, these conditions can further be weakened to  
pointwise score differentials being bounded-from-above only.



Underlying Theory: 
Exponential Time-Uniform Boundaries for Sub-  Processesψ

One key underlying technique for constructing CSs is to derive a nonnegative supermartingale (NSM) that 
uniformly bounds the deviations of the sum.*


Define, for each : 


• , the (cumulative) “sum process” of deviations from conditional means, and


• , its “variance process” (also called the “intrinsic time”). 


Then, we say that  is sub-  (“sub-exponential”) with variance process  if 
 
 
 
is bounded by a supermartingale. Here,  is the “CGF-like” function of an exponential r.v.

𝗍 ≥ 𝟣

𝖲𝗍 =
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − δ𝗂)

𝖵̂𝗍 =
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − γ𝗂)𝟤

(𝖲𝗍)𝗍≥𝟣 ψ𝖤 (𝖵̂𝗍)𝗍≥𝟣

ψ𝖤(λ) = − 𝗅𝗈𝗀(𝟣 − λ) − λ

26 cf. Howard et al. (2020; 2021)

𝖫𝗍(λ) = 𝖾𝗑𝗉 {λ𝖲𝗍 − ψ𝖤(λ)𝖵̂𝗍}

*More generally, all CSs are constructed (explicitly or implicitly) using e-processes,  
which strictly generalize NSMs. In our case, the above form of NSM suffices.



If  is sub-  with variance process  (i.e., ), then for any , 

we denote any boundary function  that satisfies the property 
 

as a sub-  uniform boundary. There are different options for forming tight uniform boundaries .  
Dividing the sum by  gives a CS for the time-varying average (e.g., of score differentials).


Furthermore, if  for an adapted sequence  with conditional means , then we 

immediately obtain an e-process for :  

 
 

(𝖲𝗍)𝗍≥𝟣 ψ (𝖵̂𝗍)𝗍≥𝟣 𝔼 [exp {λ𝖲𝗍 − ψ(λ)𝖵̂𝗍} ∣ ℱ𝗍−𝟣] ≤ 𝟣 ∀𝗍 α ∈ (𝟢, 𝟣)

𝗎α/𝟤

ψ 𝗎α/𝟤
𝗍

𝖲𝗍 =
𝗍

∑
𝗂=𝟣

(𝖷𝗂 − μ𝗂) (𝖷𝗂)𝗂≥𝟢 μ𝗂 = 𝔼𝗂−𝟣[𝖷𝗂]

𝖧𝟢 : μ̄𝗍 :=
𝟣
𝗍

𝗍

∑
𝗂=𝟣

μ𝗂 ≤ 𝟢

ℙ (∀𝗍 ≥ 𝟣 : 𝖲𝗍 ≤ 𝗎α/𝟤(𝖵̂𝗍)) ≥ 𝟣 − α

Underlying Theory: 
Exponential Time-Uniform Boundaries for Sub-  Processesψ

27

.𝖤𝗍(λ) = 𝖾𝗑𝗉 {λ
𝗍

∑
𝗂=𝟣

𝖷𝗂 − ψ𝖤(λ)𝖵̂𝗍}
cf. Howard et al. (2020; 2021)



Uniform Boundary Option #1: Conjugate Mixture (CM), 
a.k.a. Method of Mixtures

• In our context, choose  to be a suitable conjugate distribution for .


• Normal Mixture: If  is sub-Gaussian, then choose  to be Gaussian.


• Gamma-Exponential Mixture: If  is sub-exponential, then choose  to be Gamma.


• Betting interpretation: mix bets over all -e-processes (and make it tractable).


• The CM boundary leads to a CS of width  (assuming ) and is usually tight in practice.


• Empirically, the mixture e-processes can be computed in closed-form; the corresponding uniform 
boundaries can be computed numerically or analytically depending on the mixture.

𝖥(λ) (𝖲𝗍)𝗍≥𝟢

(𝖲𝗍)𝗍≥𝟢 𝖥

(𝖲𝗍)𝗍≥𝟢 𝖥

λ

𝖮( 𝗍−𝟣 𝗅𝗈𝗀 𝗍) 𝖵̂𝗍 = 𝖮(𝗍)

28
cf. Robbins and Siegmund (1970); Lai (1976); …;  
Howard et al. (2021); Kaufmann & Koolen (2021)



Uniform Boundary Option #2: Polynomial Stitching

29 cf. Howard et al. (2021) 

⟵ 𝖮( 𝗍−𝟣 𝗅𝗈𝗀𝗅𝗈𝗀 𝗍)

(assuming )𝖵̂𝗍 = 𝖮(𝗍)



Illustration: A Hoeffding-Style E-Process
Let  and . 


Suppose that, for ,  is sub-Gaussian (e.g., bounded scores) conditional on :


,


where  is the Gaussian cumulant generating function (CGF).


It then follows immediately that, for each , the process  defined by





is a NSM. 


We also say that the cumulative sums  are sub-  (“sub-Gaussian”) with variance process .

̂δ𝗂 = 𝖲(𝗉𝗂, 𝗒𝗂) − 𝖲(𝗊𝗂, 𝗒𝗂) δ𝗂 = 𝔼𝗂−𝟣[ ̂δ𝗂] = 𝖲(𝗉𝗂; 𝗋𝗂) − 𝖲(𝗊𝗂; 𝗋𝗂)

𝗂 ≥ 𝟣 ̂δ𝗂 𝒢𝗂−𝟣

𝔼𝗂−𝟣 [𝖾𝗑𝗉{λ( ̂δ𝗂 − δ𝗂) − ψ𝖭(λ)}] ≤ 𝟣 ∀λ ∈ ℝ

ψ𝖭(λ) = λ𝟤/𝟤

λ ∈ [0,∞) (𝖫𝖧
𝗍 (λ))𝗍≥𝟢

𝖫𝖧
𝗍 (λ) =

𝗍

∏
𝗂=𝟣

𝖾𝗑𝗉 {λ( ̂δ𝗂 − δ𝗂) − λ𝟤/𝟤} = 𝖾𝗑𝗉 {λ
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − δ𝗂) − ψ𝖭(λ)𝗍}

𝖲𝗍 =
𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − δ𝗂) ψN 𝖵𝗍 = 𝗍
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Illustration: A Hoeffding-Style E-Process

Now suppose that the weak null holds, i.e., .


Under , for any  we have that , so


.


Since  is a supermartingale, it follows from the supermartingale optional stopping theorem that, for 
any stopping time ,


.


In other words,  is an e-process for . The mixture over  is also an e-process for .

𝖧𝗐
𝟢 : Δ𝗍 =

𝟣
𝗍

𝗍

∑
𝗂=𝟣

δ𝗂 ≤ 𝟢

𝖧𝗐
𝟢 λ ∈ [0,∞) 𝖾𝗑𝗉 {−λ

𝗍

∑
𝗂=𝟣

δ𝗂} ≥ 𝟣

𝖫𝖧
𝗍 (λ) = 𝖾𝗑𝗉 {λ

𝗍

∑
𝗂=𝟣

( ̂δ𝗂 − δ𝗂) − ψ𝖭(λ)𝗍} ≥ 𝖾𝗑𝗉 {λ
𝗍

∑
𝗂=𝟣

̂δ𝗂 − ψ𝖭(λ)𝗍} =: 𝖤𝖧
𝗍 (λ)

(𝖫𝖧
𝗍 (λ))𝗍≥𝟢

τ ≤ ∞

𝔼𝖧𝗐
𝟢
[𝖤𝖧

τ (λ)] ≤ 𝔼𝖧𝗐
𝟢
[𝖫𝖧

τ (λ)] ≤ 𝔼𝖧𝗐
𝟢
[𝖫𝖧

𝟢 (λ)] = 𝟣

(𝖤𝖧
𝗍 (λ))𝗍≥𝟢 𝖧𝗐

𝟢 λ 𝖧𝗐
𝟢
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Additional Results in the Paper
• An Asymptotic CS (Waudby-Smith et al., 2021) that requires only  bounded moments.


• Useful for estimating differences in unbounded scores.


• A one-sided CS and e-process for Winkler’s normalized score.


• Applicable to any proper scores for binary forecasts, such as the logarithmic score.


• An approach for comparing lagged forecasts.


• More powerful tests or CSs remain an open problem.


• Detailed comparisons with existing forecast comparison methods.


• Comparable power with fixed-time tests (DM’95, GW’06) in simulated examples.

(2 + δ)
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Thank You
Preprint: https://arxiv.org/abs/2110.00115

Python Package (comparecast): https://github.com/yjchoe/ComparingForecasters

YJ’s Webpage: https://yjchoe.github.io/

Questions?

https://arxiv.org/abs/2110.00115
https://github.com/yjchoe/ComparingForecasters
https://yjchoe.github.io/
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What is a “good” forecast?
Allan H. Murphy, in his 1993 essay, suggested three types of “goodness” in the 
context of weather forecasting. In his view, good forecasters achieve high levels of:


1. Consistency: correspondence between their forecasts and judgments;


• Proper scoring rules encourage forecasters to achieve this consistency.


2. Quality: correspondence between their forecasts and the actual observations;


• Multifaceted: not just accuracy or skill, but also reliability, resolution, and 
sharpness.


3. Value: incremental benefits of their forecasts to decision makers who use them.
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The Testing-by-Betting Analogy
• I propose to you a game, which costs $0.5 to enter. I’ll pay you: 


• $1 if the roulette ball lands on a red slot ( ), and


• $0 if it does not. 


• This is an “unfair” game where I’m expected to earn $0.04 for every 
round played. ( )


• Suppose you start with some budget and keep playing this game 
according to some rule. Then, your wealth at the end of each round 
forms a nonnegative supermartingale (NSM) w.r.t. , as 
you’re not expected to increase your wealth by playing this game.


• Yet, if the roulette is “hacked” in your favor and the actual probability 
is higher than , then over time you’ll make more money!


• Finally, replace  with the null hypothesis (possibly composite) and 
your wealth in the game quantifies the evidence the null.

𝖯(𝗋𝖾𝖽) = 𝟢 . 𝟦𝟨

𝔼[𝗉𝗋𝗈𝖿𝗂𝗍] = 𝟢 . 𝟦𝟨 ⋅ (−𝟢 . 𝟧) + 𝟢 . 𝟧𝟦 ⋅ (+𝟢 . 𝟧) = + 𝟢 . 𝟢𝟦

𝖯 = 𝟢 . 𝟦𝟨

𝖯 = 𝟢 . 𝟦𝟨

𝖯
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At each round, a roulette ball lands on a red (or black) slot  
with probability ~46%.

cf. Shafer (2021); Ramdas et al. (2022); inter alia. 



From Measure-Theoretic Probability To Game-Theoretic Probability
Events of small probability = Events for which the skeptic’s capital grows large

Ville’s Theorem (1939)

• An event  (a set of many sequences) has probability  if and only if  

there exists a nonnegative supermartingale (NSM)  w.r.t.  such that  and  on .


Ville’s Inequality (1939)

• For any value , an event  has probability at most , i.e., , if and only if  

there exists a NSM  w.r.t.  such that


A Composite Generalization (Ruf et al., 2022)

• For composite sets of probabilities, the generalization corresponding to Ville’s NSM is  

an e-process (after defining a proper outer measure).

𝖠 𝖯(𝖠) = 𝟢
(𝖫𝗍)𝗍≥𝟢 𝖯 𝖫𝟢 = 𝟣 𝗅𝗂𝗆𝗍→∞𝖫𝗍 = ∞ 𝖠

α ∈ (𝟢, 𝟣) 𝖠 α 𝖯(𝖠) ≤ α
(𝖫𝗍)𝗍≥𝟢 𝖯
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𝖯(∃𝗍 ≥ 𝟣 : 𝖫𝗍 ≥ 𝟣/α) ≤ α .



More Simulated Experiments
Case: p eventually dominates q
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Takeaway Message:  
The fixed-time CI does NOT  

have a time-uniform guarantee.



E-Process Comparison with Henzi & Ziegel (2022)
Comparing Postprocessing Methods for Ensemble Weather Forecasts
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Ours 
(Weak null)

HZ’22

(Strong null)



Methodology Comparison with HZ’22
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Ours HZ’22

Anytime-Valid Yes Yes

Distribution-/Model-Free Yes Yes

Null Hypothesis Weak Strong

Estimation 
(Confidence Sequences)

Yes No (not obvious)

E-Process Form Exponential; variance-adaptive

(Betting: mixture)

Product 
(Betting: GROW in the batch sense)

Outcome Type General Binary

Scoring Rule Type Bounded or sub-Gaussian Any consistent scoring function 
(induces proper scoring rule)

k-Step Forecasts Yes (less power) Yes



Why Use CSs & E-Processes in Practice?
An Easy-To-Use & Worry-Free Comparison Framework

• Especially in a sequential setting (think: A/B 
testing), the graphical expressions of CSs and e-
processes provide a lot more information than CIs 
and p-values.


• Visualizations of e-processes also help alleviate 
dichotomous thinking, which is a contributing 
factor to the “replication crisis” in science (Helske 
et al., 2021).


• The anytime-validity of these methods ensure that 
the methods can be used “worry-free” and are less 
prone to misinterpretation.
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Evidence  


Evidence  


↑Favors 538

↓Favors Vegas
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