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Why Compare Forecasters?
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Forecast Comparison (or Evaluation) Has a Long History

including a long line of work from our very own department:

The Annals of Statistics
1989, Vol. 17, No. 4, 1856-1879

A GENERAL METHOD FOR COMPARING
PROBABILITY ASSESSORS

By MARK J. SCHERVISH

The Statistician 32 (1983) Carnegie Mellon University

© 1983 Institute of Statisticians . . . o
A probability assessor or forecaster is a person who assigns subjective

probabilities to events which will eventually occur or not occur. There are
‘two purposes for which one might wish to compare two forecasters. The first
is to see who has given better forecasts in the past. The second is to decide

The Com parison and Evaluation of ForecastersT who will give better forecasts in the future. A method of comparison suitable

for the first purpose may not be suitable for the second and vice versa. A
criterion called calibration has been suggested for comparing the forecasts of
different forecasters. Calibration, in a frequency sense, is a function of long
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CALIBRATION, COHERENCE, AND SCORING RULES*

Abstract: In this paper we present methods for comparing and evaluating forecasters whose

predictions are presented as their subjective probability distributions of various random variables TEDDY SEIDENFELDT
that will be observed in the future, e.g. weather forecasters who each day must specify their own
probabilities that it will rain in a particular location. We begin by reviewing the concepts of
calibration and refinement, and describing the relationship between this noticn of refinement
and the notion of sufficiency in the comparisen of statistical experiments. We also consider

Department of Philosophy
Washington University in St. Louis

the question of interrelationships among forecasters and discuss methods by which an observer Can there be good reasons for judging one set of probabilistic assertions more
should combine the predictions from two or more different forecasters. Then we turn our reliable than a second? There are many candidates for measuring “goodness”
attention to the concept of a proper scoring rule for evaluating forecasters, relating it to the of probabilistic forecasts. Here, I focus on one such aspirant: calibration. Cal-

ibration requires an alignment of announced probabilities and observed relative
frequency, e.g., 50 percent of forecasts made with the announced probability
of .5 occur, 70 percent of forecasts made with probability .7 occur, etc.

*Received December 1983; revised June 1984.

TI thank Jay Kadane and Mark Schervish for helpful discussions about their important
work on calibration, and Isaac Levi for his constructive criticism of this and earlier drafts.
Also, I have benefited from conversations with M. De Groot and J. K. Ghosh.

concepts of calibration and refinement. Finally, we discuss conditions under which one fore-
caster can exploit the predictions of another forecaster to obtain a better score.



But Is It Still a Relevant Problem?

If anything, it matters even more in modern ML.
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Forecast Comparison Meets
Anytime-Valid Sequential Inference



Comparing Sequential Forecasters

2019 World Series
WSN vs. HOU

Game 1 2 3 4 5 6 7

FiveThirtyEight

Vegas Betting Odds

Difference 3% 3% 12% 8% 3% 4% 5%

WSN Result Win Win Loss Loss Loss Win Win

Probability forecasts, differences, and outcomes for the 2019 World Series.

Forecasts are provided as win percentages (%) for WSN.

Is one of the forecasters actually better than the other?

Can we answer this question repeatedly over time, and
without making assumptions on the outcomes/forecasters?



Forecast Comparison as an Inference Problem

Especially Popular in Meteorology, Economics and Finance

Diebold and Mariano (1995)

* Asymptotic & exact finite-sample tests of equal forecast performance, assuming stationarity.
Giacomini and White (2006)

* Asymptotic tests of equal conditional forecast performance; allows non-stationarity (requires mixing).
Lai et al. (2011)

* Asymptotic tests of average scores & score differentials that have linear equivalents.

Henzi and Ziegel (2021)

* Valid sequential inference of conditional forecast dominance via e-processes.



A Game-Theoretic Setup

Let & (e.g., [0, 1]) denote the space of probability distributions on an outcome space % (e.g., {0, 1}).

Consider the following protocol involving two forecasters:
Game (Comparing Sequential Forecasters). Forroundst=1,2,...:
1. Forecaster 1 makes their probability forecast, p, € &.

2. Forecaster 2 makes their probability forecast, q, € £.
(Steps 1 and 2 are in an arbitrary order.)

3. Reality chooses a probability r, € A(Y).
(Note that r, is not revealed to the forecasters.) Game Filtration &,_;

4. y, ~ r.is sampled and revealed. Pt» Q- I are predictable w.r.t. ..
(i.e., y; ~ r,is the only source of randomness)

How do we derive a valid sequential inference approach for comparing these two forecasters?

8 ct. Shafer & Vovk (2005; 2019); Lai et al. (2011); Henzi & Ziegel (2021)



Desiderata

1. Time-Uniform & Anytime-Valid: validity under continuous

monitoring and at all (data-dependent) stopping times.
Game (Comparing Sequential Forecasters).

® (Can we update our conclusions as-we-go, without sacrificing

validity?
Forroundst=1,2,...:

1. Forecaster 1 makes their probability | 2. "Distribution-Free": no assumptions on (the dynamics of) (ry)s1-
forecast, p, € &. _

2. Forecaster 2 makes their probability ® The dynamics of real-world outcomes are probably not

stationary or Markovian.
forecast, q, € L. Y

(Steps 1 and 2 are in an arbitrary order.)

3. Reality chooses a probability r, € A(Y). |
(Note that r, is not revealed to the 3 ® \We do not know the forecasting models of AccuWeather or

Vegas betting odds.

3. Model-Free: No assumptions on the forecasts (py)>1 and (qo1-

forecasters.)

4.y, ~r, i led and led.
Yo Tt 15 5AMPIEE and TEVes'e 4. Estimation/Test of the Average Conditional Predictive Ability:

® Which forecaster has usually outperformed the other so far?



SAVI Against Statistical Malpractice

o (e.g., p-values & confidence intervals) do NOT guarantee validity under continuous monitoring
and at data-dependent stopping times. (Susceptible to “p-hacking.”)

e Safe, Anytime-Valid Inference (SAVI) approaches (Ramdas et al., 2022) have statistical guarantees at arbitrary stopping
times, including data-dependent sample sizes. Contidence sequences (CS), in particular, can also be monitored continuously.

* These methods are particularly suitable for sequential settings, composite nulls, and settings under weaker assumptions.

 Examples: sequential tests, e-processes, p-processes, and confidence sequences.

Classical

Inference at Any Stopping Time Invalid Valid
(“peeking”) (requires correction)
| o P i
mprecise roI?abl ities No / Tricky Yes
(e.g., composite nulls)
Game-Theoretic Interpretation No Yes

ct. Ville (1939); Wald (1945); Darling and Robbins (1967); Lai (1976); ...

10
Ramdas, Grinwald, Vovk, and Shafer (2022): recent survey w/ many more references.


https://arxiv.org/abs/2210.01948

Evaluating Forecasters via Scoring Rules

e Given a probabilistic forecast p € & for an outcome y € ¥,
ascoringruleS: X % — RU {—o0} is any (quasi-integrable) function that assesses forecast quality.

 Throughout this talk, higher scores imply better forecasts.

* A proper scoring rule elicits honest forecasts, and it measures both the calibration and sharpness of the forecaster.

* Formally, S'is proper it E, ,[S(q,y)] = E, _,[S(p,y)], Vp,q € P. Itis strictly proper when equality & p = q.

Brier S(p,y) =1—(p—y)?

Accuracy / Zero-One

S(p,y) =1(p>0.5 1 0.5)(1 —
(proper but not strictly proper) (p.y)=1(p )y +1(p <0.5)1 =)

Winkler Score S(p.y) — S(a. y)
. W(p.y:q) =
(relative to forecaster q) S(p. 1(p 2 q)) = S(a, 1(p < q))

Examples of proper scoring rules for binary forecasts.

ct. Gneiting and Katzfuss (2014); Dawid & Musio (2014); Gneiting and Raftery (2007);

11
Winkler et al. (1996); Schervish (1989); Dawid (1986); Savage (1971); Brier (1950); ...



Comparing Forecasts via Average Score Differentials

Let S be a scoring rule. The average score differential A, between forecasts (p;);; and
(9))i<t is a time-varying parameter quantifying the expected difference in forecast quality

up to time t:

1
T Z —11S(P;» Y1) — S(ai, ¥l

i=1

where E;,_{[ -] =E[ - | &,_;] is the conditional expectation w.r.t. y. ~ r..

Goal: Estimate A, at any time t. (alternatively, test if H, : A, < O for all times t).
(=)

12



Confidence Sequences for Estimating Time-Varying Parameters

Let (0,);~1 be a sequence of parameters indexed by time.

A (1 — a)-level confidence sequence (CS) (C)),.; for (61 is a Cumulative Miscoverage Rate

. . . 0.6
sequence of confidence intervals (Cl) that has a uniform coverage
: - : " 0.5
guarantee over time (“time-uniform”):
P(Vt>1:6€C)>1-a. | 03 Fixed-Time Cl
s o A A A P St s st : —— Significance Level
The coverage guarantee is also valid at arbitrary & data- 0.1
dependent stopping times (“anytime-valid”). E.g., collecting 00 T e 4000 000 8000 10000
additional data after estimation does not invalidate the guarantee. Time

The fixed-time Cl does not have a time-uniform
coverage guarantee. A 95% CS has a cumulative

coverage guarantees at a tixed sample size n: miscoverage rate of < 0.05 (zero in the above).

This is not true for the usual, fixed-time CI C_, which only has

Vn>1,P@O.€C)>1-a

*Cumulative Miscoverage Rate: P(Ji <t: 6, & C))
cf. Darling and Robbins (1967); Howard et al. (2021) 13 (averaged over repeated simulations)



Main Result 1: CSs for Sequential Forecast Comparison

- LR -
| Theorem (Empirical Bernstein CS). Let 6; = S(p;, ;) — S(q;, y;) and A, = " Z 0. Suppose that | ;| are bounded a.s. for |

each | > 1. Then, foreach a € (0, 1),

X \/ V. loglog V,
| t

forms a (1 — a)-level CS for A,

Va\

| t
where V, = Z (6, — A._;)? denotes an empirical variance term and ¢, < \/Iog(1 /a) is a constant.
' i=1

o Asymptotically Zero Width. The width of the CS shrinks to zero, at a O(\/t_1 log log t) rate, achieving

the same rate as a fixed-time Cl up to logarithmic factors.

e Variance-Adaptivity. The width of this CS shrinks quickly as the variance stabilizes.

14 ct. Howard et al. (2020; 2021)



Main Result 2: E-Processes for Testing H, : A, <0

Game-Theoretic
Interpretation:

Now consider the following (composite) null hypothesis:
“The wealth of a gambler

Ho- A< 0. Vt>1 that bets against Hy."
Tt B (You're expected to lose

An e-process (E,).q for Hy is a sequence of nonnegative random variables such that: money if Hy is true &
win money otherwise.)

for any stopping time 7, (Bl <1

An e-process measures the amount of accumulated evidence against the null hypothesis.

If | observe an e-value (a realization at some stopping time t) of 100, | would know that, if Hy were true, the
chance of it happening is at most 1% by Markov's inequality (or, in the sequential case, by Ville's inequality).

‘"Theorem (E-Process; Informal). Assume the same conditions as the previous Theorem.
Given the null Hy : A, < 0, Vt, there exists an e-process that corresponds to the (UCB of) the EB CS.

cf. Shafer (2011); Grinwald et al. (2019);

1> Vovk and Wang (2021); Ramdas et al. (2022)



What's “Game-Theoretic” About It?

* Recall that a supermartingale (L) w.r.t. a distribution P (think: a point
null) satisfies Ep[L, | &,_1] = L,_; Vt > 1.

e A nonnegative supermartingale (NSM) for P is the wealth of a gambler
who bets on a game with odds determined (possibly unfairly) w.r.t. P.

e An e-process for a set of distributions & (think: composite null) is any
nonnegative process that is upper-bounded by a NSM for every P € .

e An e-process for & is the minimum wealth of a gambler who places

bets on all games determined by P € &.

e Game-theoretic statistics sits in between game-theoretic probability and
online learning, with a focus on valid inference under weaker

assumptions.

o Key references include Shafer; Griinwald; Ramdas et al;
Earlier references include Wald, Robbins, Darling, Siegmund, and Lai.

16



Experiments



Comparing Major League Baseball Forecasters
FiveThirtyEight vs. Vegas betting odds, using the Brier score

95% CS for At
0.010
— EBCS
0.005
0.000
—0.005
-0.010
0 5000 10000 15000 20000 25000

Time

Data: Every MLB game’s win/loss outcomes from 2010 to 2019.
See paper for further experiment details.

18

104

107

100

E-Process (log-scale)

.,.»f"'/ == =4140(=1/0.025)
o

—¢<‘

—— Ho:Ar<0
e Hy:A;=0

0 5000 10000 15000 20000 25000
Time



Comparing Ensemble Weather Forecasts
Experiment Adapted from Henzi & Ziegel (2022).

Ho : A(IDR, HCLR ) =0

90% CS on A{IDR, HCLR_)
0.03 : . 104
0.02 103
)
'
0.01 % 102 Airport
<] (@))]
. O —— Brussels
\49 0.00 \cn/ 101
wn N N | S A S i B Frankfurt
@),
_0.01 § 100 ............. | ondon
Q- memomom Zurich
L
-0.02 10~
-0.03 1072
2012 2013 2014 2015 2016 2017 2012 2013 2014 2015 2016 2017
Year Year

Data: ECMWEF; Henzi et al. (2021) 19



Simulated Experiments
CSs Uniformly Cover Time-Varying Means; EB CS (Variance-Adaptive) Is Tighter.

95% CS for A Width of CS
0.3 0.6
0.2 —— EBCS 0.5 Hoeffding CS
0.1 A Hoeffding CS 0.4
0.0 —f—— === 0.3
—-0.1 0.2 \
-0.2 1 0.1
—-0.3 0.0
0 2000 4000 6000 3000 10000 0 2000 4000 6000 38000 10000

Time Time

20



Simulated Experiments
E-Processes for p and q Match the LCB and UCB of EB CS Crossing the Zero Line.

03 95% CS for At 0 E—{Process (log-scale)

— A
0.2 — EBCS

102
0.1 A Hoeffding CS ’
7 NN o

o T

. 107 —— Ho:Ac=<0 v
| ~—= Ho:A;=0 ~-""~
0.3 10-4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Time Time

21



Simulated Experiments

Fixed-Time Cl Does Not Have the Time-Uniform Coverage Guarantee of CS.

02 95% CS/ClI tor A - Cumulative Miscoverage Rate

A Y O N AP P RS EEPPRTLLTEEE RERCERA A

04 —— EBCS 0.5

Fixed-Time CI
01 A 0.4 ; — EBCS
0.0 - ~ , 0.3 I U S . Fixed-Time CI

e —— Significance Level
—-0.1 ' 0.2
-0.2 0.1
—-0.3 0.0
0 2000 4000 6000 3000 10000 0 2000 4000 6000 38000 10000
Time Time

*Cumulative Miscoverage Rate: P(Ji1 <t: A, € C)
(averaged over repeated simulations)

Fixed-time Cl is based on the martingale CLT (Lai et al., 2011). 22



Some Theory



Main Result 1: CSs for Sequential Forecast Comparison

- LR -
| Theorem (Empirical Bernstein CS). Let 6; = S(p;, ;) — S(q;, y;) and A, = " Z 0. Suppose that | ;| are bounded a.s. for |

each | > 1. Then, foreach a € (0, 1),

X \/ V. loglog V,
| t

forms a (1 — a)-level CS for A,

Va\

| t
where V, = Z (6, — A._;)? denotes an empirical variance term and ¢, < \/Iog(1 /a) is a constant.
' i=1

o Asymptotically Zero Width. The width of the CS shrinks to zero, at a O(\/t_1 log log t) rate, achieving

the same rate as a fixed-time Cl up to logarithmic factors.

e Variance-Adaptivity. The width of this CS shrinks quickly as the variance stabilizes.

24 ct. Howard et al. (2020; 2021)



Main Result 2 (More Formally): E-Processes for Testing Hy : A, <0

'Theorem (E-Process). Assume the same conditions* as the previous Thm. Then, foreach 4 € [0,4..,,),
E.(4) :=exp {/Itﬁt — l//E(/I)\A/t} is an e-process for Hy : A, < 0, Vt,

where we(4) = —log(1 — 1) — 4 ("the sub-exponential CGF").

o Method of Mixtures for E-Processes (& CSs). For any distribution F on [0, 4..,), the mixture E{”iX(F) = | E,(A)dF(4)

is also an e-process. (F can be chosen to be a “conjugate” distribution such that EM™*(F) has a closed form.)

* P-Process (Anytime-valid p-value). It you'd prefer getting a p-value, then the e-process can be converted into a p-

orocess via p, = E7! or p, = (maXiStEi)_1.

*In the case of e-processes, these conditions can further be weakened to

: : : : : 25
pointwise score differentials being bounded-from-above only.



Underlying Theory:
Exponential Time-Uniform Boundaries for Sub-is Processes

One key underlying technique for constructing CSs is to derive a nonnegative supermartingale (NSM) that
uniformly bounds the deviations of the sum.*

Define, foreach t > 1:

(5 0;), the (cumulative) “sum process” of deviations from conditional means, and

AMﬂ

t
Z (5 7’|)2 its “variance process” (also called the “intrinsic time”).

Then, we say that (S;);> is sub-yg ("sub-exponential") with variance process (\A/t)t21 if
() = exp {zs _ ny(z)v } |

is bounded by a supermartingale. Here, l//E(/l) = Iog(1 — /1) — A is the "CGF-like” function of an exponential r.v.

*More generally, all CSs are constructed (explicitly or implicitly) using e-processes,
26 .
which strictly generalize NSMs. In our case, the above form of NSM suffices. cf. Howard et al. (2020; 2021)



Underlying Theory:
Exponential Time-Uniform Boundaries for Sub-is Processes

T (Spi>1 is sub-y with variance process (\A/t)t>1 (i.,e., E [exp {/IS — y/(/l)\7t} | 3‘7t_1] < 1Vt), then forany a € (0, 1),

we denote any boundary function Ua/z that sat|sf|es the property

P (‘v’t >1:§, < ua/Z(Vt)> >1—a

as a sub-y uniform boundary. There are d|ﬁerent optlons for forming tlght unn‘orm boundaries u .

Dividing the sum by t gives a CS for the time-varying average (e.g., of score differentials).

Furthermore, it S, = Z (X; — ;) for an adapted sequence (X;);»o with conditional means y; =

=1

immediately obtain an e-process for H : i, := Z,u, <

EM) =exp {szi —wEu)Vt}- |

i=1

27

_i—1 [XI]’ theh we

cf. Howard et al. (2020; 2021)



Uniform Boundary Option #1: Conjugate Mixture (CM),
a.k.a. Method of Mixtures

* In our context, choose F(4) to be a suitable conjugate distribution for (S));o.
* Normal Mixture: It (5));» is sub-Gaussian, then choose F to be Gaussian.
 Gamma-Exponential Mixture: IT (S)),5 is sub-exponential, then choose F to be Gamma.

e Betting interpretation: mix bets over all A-e-processes (and make it tractable).

e The CM boundary leads to a CS of width O(\/t_1 log t) (assuming \7t = O(t)) and is usually tight in practice.

e Empirically, the mixture e-processes can be computed in closed-torm; the corresponding uniform

boundaries can be computed numerically or analytically depending on the mixture.

ct. Robbins and Siegmund (1970); Lai (1976); ...;

28
Howard et al. (2021); Kaufmann & Koolen (2021)



Uniform Boundary Option #2: Polynomial Stitching

Final‘boundary __—

A

—

O

>

—

<

g

-

= . :

DCQD Linear uniform
Chernoff bounds

(0 - 0 i
n n n°
Vi

1.7\/(17} V 1) (loglog (2 (f/} V 1)) + 3.8) + 3.41og log (2 (f/} V 1)) + 13

t — C)(\/t_1 loglog t)

(assuming \7t = O(1))

A, +2.

29 cf. Howard et al. (2021)



lllustration: A Hoeffding-Style E-Process

Let 5, = S(pi, y;) — S(qi, y;) and & = E,_4[5.] = S(p;r) — S(qi; ).

Suppose that, fori > 1, Si is sub-Gaussian (e.g., bounded scores) conditional on &, _;:
E._ [exp{/l(gi _ 5 — WN(A)}] <1 ViER,

where yn(4) = 4%/2 is the Gaussian cumulant generating function (CGF).

't then follows immediately that, for each 4 € [0,00), the process (LtH(/I))tZO defined by

t

LH) = Hexp {A(Si —5) — ,12/2} = exp {/1 Zt: (6, — &) — ny(/l)t}
=1

1=

Isa NSM.

t
We also say that the cumulative sums S, = Z (6; — 6;) are sub-y,, ("sub-Gaussian™) with variance process V, = t.
i=1

30



lllustration: A Hoeffding-Style E-Process

1 t
Now suppose that the weak null holds, i.e., H] : A, = " Z o, < 0.
=1

t
Under HJ, for any A € [0,00) we have that exp {—/1 2 5i} > 1, so
i=1

LH(1) = exp {,1 Y (6,-6) - ny(z)t} > exp {,1 Y 6 - ny(/l)t} =: EH(1).
=1

=1

Since (L{'(4))q is @ supermartingale, it follows from the supermartingale optional stopping theorem that, for

any stopping time 7 < o,

_Hg[EIf;I(;t)] < _Hg[l—!;l(;t)] < _Hg[l—g(ﬂ)] = 1.
In other words, (EP(/I))tzo is an e-process for HY. The mixture over A is also an e-process for HJ.

31



Additional Results in the Paper

e An Asymptotic CS (Waudby-Smith et al., 2021) that requires only (2 + 6) bounded moments.
o Useful for estimating differences in unbounded scores.

e A one-sided CS and e-process for Winkler’'s normalized score.
* Applicable to any proper scores for binary forecasts, such as the logarithmic score.

e An approach for comparing lagged forecasts.
* More powerful tests or CSs remain an open problem.

e Detailed comparisons with existing forecast comparison methods.

 Comparable power with fixed-time tests (DM'95, GW'06) in simulated examples.

32



Thank You


https://arxiv.org/abs/2110.00115
https://github.com/yjchoe/ComparingForecasters
https://yjchoe.github.io/

Appendix



What is a “"good” forecast?

Allan H. Murphy, in his 1993 essay, suggested three types of “goodness” in the
context of weather forecasting. In his view, good forecasters achieve high levels of:

1. Consistency: correspondence between their forecasts and judgments;
* Proper scoring rules encourage forecasters to achieve this consistency.
2. Quality: correspondence between their forecasts and the actual observations;

* Multifaceted: not just accuracy or skill, but also reliability, resolution, and
sharpness.

3. Value: incremental beneftits of their forecasts to decision makers who use them.

35



The Testing-by-Betting Analogy

| propose to you a game, which costs $0.5 to enter. I'll pay you:

o $1 if the roulette ball lands on a red slot (P(red) = 0.46), and
e $0 if it does not.

This is an “unfair” game where I'm expected to earn $0.04 for every
round played. (E[profit] =0.46 - (—=0.5)+0.54-(+0.5) =+ 0.04)

Suppose you start with some budget and keep playing this game
according to some rule. Then, your wealth at the end of each round

forms a nonnegative supermartingale (NSM) w.r.t. P =0.46, as
you're not expected to increase your wealth by playing this game.

Yet, it the roulette is “hacked” in your favor and the actual probability
is higher than P = 0.46, then over time you’ll make more money!

Finally, replace P with the null hypothesis (possibly composite) and
your wealth in the game quantifies the evidence the null.

36

At each round, a roulette ball lands on a red (or black) slot
with probability ~46%.

ct. Shater (2021); Ramdas et al. (2022); inter alia.



From Measure-Theoretic Probability To Game-Theoretic Probability

Events of small probability = Events for which the skeptic’s capital grows large

Ville’'s Theorem (1939)
e An event A (a set of many sequences) has probability P(A) = 0 if and only if

there exists a nonnegative supermartingale (NSM) (L,);»q w.r.t. P such that Ly = 1 and lim,_, ., L, = o0 on A.

Ville's Inequality (1939)

e Forany value a € (0, 1), an event A has probability at most a, i.e., P(A) < a, if and only if
there exists a NSM (L)>o w.r.t. P such that

C P@Etz1:L >V <a. |

A Composite Generalization (Ruf et al., 2022)

* For composite sets of probabilities, the generalization corresponding to Ville’s NSM is

an e-process (after defining a proper outer measure).
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Case: p eventually dominates q
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E-Process Comparison with Henzi & Ziegel (2022)

Comparing Postprocessing Methods for Ensemble Weather Forecasts
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Methodology Comparison with HZ'22

Anytime-Valid

Estimation
(Confidence Sequences)

k-Step Forecasts

Exponential; variance-adaptive
(Betting: mixture)

Yes (less power)

Any consistent scoring function
(induces proper scoring rule)
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Why Use CSs & E-Processes in Practice?

An Easy-To-Use & Worry-Free Comparison Framework

e Especially in a sequential setting (think: A/B
testing), the graphical expressions of CSs and e-
processes provide a lot more information than Cls
and p-values.

e Visualizations of e-processes also help alleviate
dichotomous thinking, which is a contributing

factor to the “replication crisis” in science (Helske
et al., 2021).

* The anytime-validity of these methods ensure that
the methods can be used “worry-free” and are less
prone to misinterpretation.
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