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You're watching the World Series, and you find two
forecasters, FiveThirtyEight and Vegas, sequentially
making predictions on each game’s outcome.

How can you tell if one forecaster has made
(significantly) better forecasts than the other?

2019 World Series Game 1 2 3 4 5 6 7
(WSN vs. HOU)
FiveThirtyEight 9
Vegas Betting Odds Y, 9
Difference 3% 3% 12% 8% 3% 4% 5%
WSN Result Win Win Loss Loss Loss Win Win

Figure: Probability forecasters on the outcome of the 2019 World
Series games (WSN vs. HOU). Green means that their forecasts
were correct; Red means they were incorrect (threshold at 50%).

This problem extends far beyond sports: properly
evaluating and comparing sequential forecasters can
be crucial in meteorology, epidemiology, elections,

economics, finance, and more.

A Game-Theoretic Setup

Inspired by game-theoretic statistics [1], we define a
forecast comparison game with which we develop our
sequential inference methods:

Game (Comparing Forecasters)

Let &2 denote the space of probability distributions on
an outcome space %'. For roundst=1,2,...:

1. Forecaster 1 makes their forecast p; € & .

2. Forecaster 2 makes their forecast q: € & .
(Steps 1and 2 are in an arbitrary order.)

3. Reality chooses ry € & .
(r¢ is hidden from the forecasters.)

4.y ~ ry Is sampled and revealed.

This game is sequential in nature, and no assumptions
are placed on the behaviors (dynamics) of Reality or
Forecasters.

Objectives

The game-theoretic setup helps us develop forecast
comparison methods that are:

1. Time-Uniform a.k.a. Anytime-Valid: validity under
continuous monitoring and at all (data-dependent)
stopping times;

2. “Distribution-Free”: no assumptions on the
time-varying dynamics of (r;)i>1;

3. Model-Free: no assumptions on the forecasts (p;)i>
and (gt )i>1; and

4. Reflective of the average predictive ability over time,
as opposed to uniform dominance over time.

Our methods also apply to general types of forecasts
(probability, functional, and distribution) and
outcomes (binary, multiclass, and continuous), as long
as the evaluation metric (scoring rule) is bounded.

Parameters of Interest:

Average Score Differentials (A¢)>1.

LetS : & X % — R be any scoring rule that
evaluates probabilistic forecasts. Higher scores imply
better forecasts.
Given a scoring rule S, we estimate the time-varying
average score differentials (A:)+>; between the two
forecasters:

AVRES EZ i1 [S(pi, yi) — S(ai vi) ],

where [E;_4 is the conditional expectation w.r.t. the

i=1

past (filtration of the game up to round i — 1).
In the following, (A;)>1 denotes its empirical estimate
without the conditional expectation.

Examples of scoring rules. Lety € {0, 1} be a binary
outcome and p € [ 0, 1] a probability forecast ony.

e Brier Score: S(p,y) = 1— (p— y)>.
e Zero-One Score (i.e., Accuracy):
S(p,y) =1p=12)y+1(p < 172)(1—y).
Other (bounded) scoring rules can also be used,
depending on the types of forecasts and outcomes.

Confidence Sequences & E-Processes

A confidence sequence (CS) [2] (Ci)i>1 is a sequence of
confidence intervals (Cl) that uniformly cover a
time-varying parameter at all times (“time-uniform”):

P(Vt>1:A€C)>1—a,

given a significance level a € (0, 1). This differentiates
a CS from a fixed-time Cl, whose coverage guarantee is
limited to a pre-specified sample size.

An e-process [3] measures the amount of evidence
accumulated against the null; an e-value is simply a
realization of an e-process at any given time. More
formally, an e-process (E;):>o for a (composite) null Hg
Is @ nonnegative adapted process with Eg = 1 and

Cpl E-] <1, Vstopping time 7, VP € H,.

Under Hp, an e-process is bounded by 1 at arbitrary
stopping times (“anytime-valid”), and it will only grow
large if we obtain evidence against the null.

In our setting, we consider the one-sided null
Hg : A\t < 0,Vt, so higher e-values imply that there is
more evidence favoring Forecaster 1over 2.

Suppose that |S(p;, vi) — S(q;, v;)| are bounded a.s. (e.g., Brier and zero-one scores). Then,
Ci .= (At + t_1uo,/2(\7t)) formsa (1— a)-CSfor A, Va € (0,1),

where u,/, is a sub-exponential uniform boundary [2] and V; is an empirical estimate of the variance process.
This is an example of a variance-adaptive CS, and its width shrinks to zero at a O(1/ 4/t) rate, up to log factors.

Furthermore, given the null hypothesis H‘(’)V : A+ < 0,Vt (saying “p is no better than g on average”),

E{(A) :=exp {)\tﬁt — l/JE()\)\A/t} is an e-process for H', VA € [0, Ay),

where yg(A) = —10g(1— A) — X is the exponential cumulant generating function (CGF).
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Applications:

Comparing Baseball & Weather Forecasters

FiveThirtyEight vs. Betting Odds on MLB Games
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Figure: 95% CS and e-processes for comparing FiveThirtyEight’s
win probability forecasts and Vegas betting odds on Major League
Baseball (MLB) games. Scoring rule is the Brier score. Data
includes all regular and post-season games from 2010 to 2019.

Comparing Ensemble Weather Forecasters
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Figure: 90% CSs and e-processes for comparing pairs of 1-day
probability of precipitation (PoP) forecasters from 2012 to 2017 at
four locations. Scoring rule is the Brier score. IDR and HCLR__ are
two statistical postprocessing methods for predicting the PoP of
the next day. Data & forecasts from [4].
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Find Us Online!

e Paper: arxiv.org/abs/2110.00115
e Code: github.com/yjchoe/ComparingForecasters

e Email: {yjchoe,aramdas}@cmu.edu
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