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Abstaining Classifiers
a.k.a. Selective Classifiers; Classifiers with a Reject Option
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Abstaining  
Classifier

COVID-19 Positive

COVID-19 Negative

Abstention (Rejection)

Sample lung CT scans of (non-)COVID patients from Ahuja et al. (2020).

Unlabeled Lung CT Scans

Chow (1957)



Motivation: Evaluating Free-Trial ML Services

• Suppose that we want to evaluate black-box ML 
prediction services for image classification.  

• During the free trial, each service deploys an 
abstaining classifier, such that it only gives 
predictions on certain inputs and abstain on others. 

• The full (paid) versions do not abstain. We want 
to compare the performance of the full versions.
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Key Takeaway & Main Question

To the evaluator, abstentions are just missing predictions!
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How do we compare black-box abstaining classifiers 
 

while accounting for their missing predictions?



Problem Setup
Definition. An abstaining classifier is a pair of functions , where 

•  is the base classifier, which outputs a (probabilistic) prediction; and 

•  is the abstention mechanism, which outputs the probability of abstention.

(𝖿, π)

𝖿 : 𝒳 → 𝒫(𝒴)

π : 𝒳 → [𝟢, 𝟣]
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Evaluating a black-box abstaining classifier . 

1. Classifier receives an input . 

2. Classifier decides whether or not it will abstain: . 

• If , then Evaluator observes the prediction & score: . 

• If  (“rejection”), then Evaluator does NOT see its prediction or score (  is missing).

(𝖿, π)

𝖷

𝖱 ∣ 𝖷 ∼ 𝖡𝖾𝗋(π(𝖷))

𝖱 = 𝟢 𝖲 = 𝗌(𝖿(𝖷), 𝖸)

𝖱 = 𝟣 𝖲

Chow (1957); El-Yaniv & Wiener (2010)



Illustration: Evaluating a Black-Box Abstaining Classifier
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Base Classifier  
𝖿 : 𝒳 → 𝒴

Abstention 
Mechanism 

π : 𝒳 → [𝟢, 𝟣]

Input  
𝖷

Abstention 
𝖱 |𝖷 ∼ 𝖡𝖾𝗋(π(𝖷))

Label 
𝖸

Observed Score 
𝖲 = 𝗌(𝖿(𝖷), 𝖸)

Base Prediction 
𝖿(𝖷)

Predict 

𝖱 = 𝟢

Abstain 𝖱 = 𝟣 Missing 
∅

Black-Box

*Base classifier & abstention mechanism may be conjoined 
(e.g., via shared feature layers).

Yellow: only observed when .𝖱 = 𝟢



The 3-Step Approach To Nonparametric Causal Inference
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Identification

ψ = 𝔼[μ𝟢(𝖷)]

Target Definition

 
(“Counterfactual Score”)

ψ 𝖽𝖾𝖿= 𝔼[𝖲]

Conditions  
1. Missing At Random: 

 

2. Positivity: 
 

(for some )

𝖲 ⊥⊥ 𝖱 ∣ 𝖷

π(𝖷) ≤ 𝟣 − ϵ
ϵ > 𝟢

Estimation

 𝗇 (ψ̂𝖽𝗋 − ψ)
↝ 𝒩 (𝟢, 𝖵𝖺𝗋ℙ[𝖨𝖥])

Conditions  
1. Double Robustness: 

 
 

2. IF Consistency: 

∥ ̂π − π∥𝖫𝟤∥ ̂μ𝟢 − μ𝟢∥𝖫𝟤

= 𝗈ℙ(𝟣/ 𝗇)

∥ ̂𝖨𝖥 − 𝖨𝖥∥ = 𝗈ℙ(𝟣)

cf. Rubin (1974); Robins et al. (1994); many others.

*Nuisance Functions (Learnable): 
Abstention Mechanism 

 

Selective Score Predictor 

π(𝖷) 𝖽𝖾𝖿= ℙ(𝖱 = 𝟣 ∣ 𝖷)

μ𝟢(𝖷) 𝖽𝖾𝖿= 𝔼[𝖲 ∣ 𝖱 = 𝟢, 𝖷]

Independent 
Evaluation Set

Stochastic 
Abstentions

Flexible 
Nuisance  
Learners 

(NN, RF, …)



Target Definition

Target  
Definition

Identification

Estimation



Our Target: The Counterfactual Score
Definition (Counterfactual Score): Given an abstaining classifier,  
we define the counterfactual score  as 

 

where  for some scoring function  (e.g., accuracy & Brier score).  
Expectation  is taken over . No conditioning on non-abstentions ( ).

ψ

𝖲 = 𝗌(𝖿(𝖷), 𝖸) 𝗌
𝔼 (𝖷, 𝖱, 𝖲) 𝖱 = 𝟢
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NOTE: 
 is missing when .𝖲 𝖱 = 𝟣, ψ = 𝔼[𝖲]

Why the counterfactual score? 

• Measures how each classifier would have performed, had it not been allowed to abstain. 

• There exist efficient estimators that do not require parametric modeling assumptions.



The Popular Metric Does NOT Account for Missing Predictions

It is common to evaluate abstaining classifier using selective score & coverage  
(a two-dimensional metric): 

• Selective score = expected score only on selections (non-abstentions) = . 

• Coverage = expected rate of non-abstentions = . 

𝔼[𝖲 ∣ 𝖱 = 𝟢]

ℙ(𝖱 = 𝟢)
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Selective score + coverage do NOT capture the classifier’s performance adequately, 
 

particularly when the missing predictions matter.



For Comparison: The Counterfactual Score Difference

Definition (Counterfactual Score Difference): given two abstaining classifiers,  & ,  
we define their counterfactual score difference  as 

 

where  and  for some scoring function . 
Expectation  is taken over . No conditioning on non-abstentions.

𝖠 𝖡
Δ

𝖲𝖠 := 𝗌(𝖿𝖠(𝖷), 𝖸) 𝖲𝖡 := 𝗌(𝖿𝖡(𝖷), 𝖸) 𝗌
𝔼 (𝖷, 𝖱𝖠, 𝖲𝖠, 𝖱𝖡, 𝖲𝖡)
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,Δ := 𝔼[𝖲𝖠 − 𝖲𝖡]

Remark: The two classifiers can operate under their separate abstention mechanisms.



Classifiers Can Use Separate Abstention Mechanisms
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Counterfactual Score Difference 
Δ = 𝔼[𝖲𝖠 − 𝖲𝖡]

ID

1

2

3

4

⋮
⋮

N

X RA SA

?

?

RB SB

?

?

⋮
⋮

⋮
⋮

may observe both, either, or neither

Average Treatment Effect 
𝖠𝖳𝖤 = 𝔼[𝖸𝟣 − 𝖸𝟢]

?

ID

1

2

3

4

⋮
⋮

N

X T Y0Y1

?

?

?

?

?

⋮
⋮

⋮
⋮

observe one or the other



Identification

Target  
Definition

Identification

Estimation



Identifying Condition #1: Missing-at-Random
The missing-at-random (MAR) condition says that, given 
the input , the decision to abstain  is independent of 
the base classifier’s score : 

• MAR is satisfied as long as the evaluation data is 
independent from the classifier (Ppn. 4.1). 

• Typically, predictions are NOT missing completely at 
random (MCAR), i.e., . 

𝖷 𝖱
𝖲 = 𝗌(𝖿(𝖷), 𝖸)

𝖲 ⊥⊥ 𝖱
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 𝖲 ⊥⊥ 𝖱 ∣ 𝖷 .

(a.k.a. ignorability & no unmeasured confounding) 

Conditioned on ,  
 and  are d-separated.

𝖷
𝖲 𝖱

Diamond <S> means partially observed. 
(cf. missingness graphs by Mohan et al., 2013)



Can the MAR Condition Ever Be Violated?
• The MAR condition is met as long as  (Ppn. 4.1),  

i.e., the classifier’s training data is independent from the test data. 

• This is expected in a typical setup for evaluating learning algorithms. 

• If a classifier already saw the test data, then it would surely do better. 

• Unfortunately, in a purely black-box setting, the evaluator may not 
know what training data was used by the classifier. 

• E.g., large ML models pre-trained on publicly available datasets.  

• Practical suggestions for preventing/addressing MAR violations: 

• Use a test set that is not publicly available (e.g., patient data). 

• Conduct sensitivity analysis, e.g., under a contamination model 
(Bonvini & Kennedy, 2022).

(𝖷, 𝖸) ⊥⊥ 𝒟𝗍𝗋𝖺𝗂𝗇
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Identifying Condition #2: Positivity
The positivity condition for this problem requires that each abstaining classifier cannot 
deterministically abstain (on any meaningful input region): 

This is a necessary condition:  

• If a classifier deterministically abstains on some nontrivial part of the input space, then 
there is no way of knowing what it would have done in that region.
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 ∃ϵ > 𝟢 : π(𝖷) = ℙ(𝖱 = 𝟣 ∣ 𝖷) ≤ 𝟣 − ϵ .



How Can We Address the Positivity Condition?
• Positivity violations can affect the validity and efficiency of the estimator. 

• Yet, in practice, classifiers may abstain deterministically on certain inputs. 

• Argument 1: unidentifiability & a need for a policy-level approach. 

• If a governing body seeks to audit commercial softwares for safety-critical 
tasks, then they must require vendors to match a level of positivity. 

• Argument 2: stochastic abstentions can improve performances. 

• Kalai & Kanade (2021) showed that stochastic abstentions can improve 
out-of-distribution (OOD) performance of abstaining classifiers. 

• Schreuder & Chzhen (2021) derived a stochastically abstaining classifier 
that achieves good performance subject to a fairness constraint.  

17

For 0.2,  
the miscoverage rate of a 95% CI 

rises above the intended level.

ϵ <



Identification
Proposition. Under the MAR and positivity conditions, we can identify the counterfactual 
score as an expectation over observables: 

 
where  is the score regression function: . 

In other words, the target parameter can now be estimated with observed data.  

The rest of the problem is purely that of functional estimation (nothing causal).

μ𝟢 μ𝟢(𝗑) = 𝔼[𝖲 ∣ 𝖱 = 𝟢, 𝖷 = 𝗑]

18

, ψ = 𝔼[𝖲] = 𝔼[μ𝟢(𝖷)]



One-Line Proof of Identification
Proposition. Under the MAR and positivity conditions, we can identify the counterfactual 
score as following: 

 
where  is the score regression function: . μ𝟢 μ𝟢(𝗑) = 𝔼[𝖲 ∣ 𝖱 = 𝟢, 𝖷 = 𝗑]
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, ψ = 𝔼[𝖲] = 𝔼[μ𝟢(𝖷)]

One-line proof using standard arguments:  is well-defined by positivity; then, 

. 

μ𝟢

ψ = 𝔼[𝖲] = 𝔼[𝔼[𝖲 ∣ 𝖷]] (𝖬𝖠𝖱)= 𝔼[𝔼[𝖲 ∣ 𝖷, 𝖱 = 𝟢]] = 𝔼[μ𝟢(𝖷)]



Identification for Δ𝖠𝖡

Under the identifying assumptions, we have that: 

where 

  and  . 

As before, the target parameter can now be estimated with observed data!  

The rest of the problem is purely that of function estimation (and not causal). 

μ𝖠
𝟢 (𝗑) = 𝔼[𝖲𝖠 ∣ 𝖱𝖠 = 𝟢, 𝖷 = 𝗑] μ𝖡

𝟢 (𝗑) = 𝔼[𝖲𝖡 ∣ 𝖱𝖡 = 𝟢, 𝖷 = 𝗑]
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, Δ𝖠𝖡 = 𝔼[𝖲𝖠 − 𝖲𝖡] = 𝔼[μ𝖠
𝟢 (𝖷) − μ𝖡

𝟢 (𝖷)]



Estimation

Target  
Definition

Identification

Estimation



The Doubly Robust Estimator ψ̂𝖽𝗋
Given an i.i.d. data of potentially missing predictions, ,  
the doubly robust (DR) estimator for  is defined as: 

 
The summand is the influence function for  (a first-order bias correction). 

For comparison, we can simply take the difference between the two classifiers ( ).

{(𝖷𝗂, 𝖱𝗂, (𝟣 − 𝖱𝗂)𝖲𝗂)}𝗇
𝗂=𝟣 ∼ ℙ

ψ

𝔼[μ𝟢(𝖷)]

ψ̂𝖠
𝖽𝗋 − ψ̂𝖡

𝖽𝗋

22

.ψ̂𝖽𝗋 =
𝟣
𝗇

𝗇

∑
𝗂=𝟣

[ ̂μ𝟢(𝖷𝗂) +
𝟣 − 𝖱𝗂

𝟣 − ̂π(𝖷𝗂)
(𝖲𝗂 − ̂μ𝟢(𝖷𝗂))]

Other names: augmented IPW (Robins et al., 1994); 
targeted MLE (van der Laan & Rubin, 2006);  

double ML (Chernozhukov et al., 2018)

*The nuisance functions,  and , are estimated  
via cross-fitting (K-fold sample splitting).

̂μ𝟢 ̂π



DR Estimator is Asymptotically Normal & Efficient

Theorem (DR estimation of the counterfactual score). Assume the identifying conditions 
hold & that the nuisance functions are estimated at a parametric rate in product: 

. 

Then, assuming , the DR estimator is asymptotically normal, and its 
variance matches the nonparametric (and locally minimax) efficiency bound: 

An asymptotic CI for  can be constructed using the empirical estimate of .

∥ ̂π − π∥𝖫𝟤(ℙ)∥ ̂μ𝟢 − μ𝟢∥𝖫𝟤(ℙ) = 𝗈ℙ(𝟣/ 𝗇)

∥ ̂𝖨𝖥 − 𝖨𝖥∥𝖫𝟤(ℙ) = 𝗈ℙ(𝟣)

ψ 𝖵𝖺𝗋ℙ[𝖨𝖥]
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.𝗇 (ψ̂𝖽𝗋 − ψ) 𝖽⟶ 𝒩 (𝟢, 𝖵𝖺𝗋ℙ[𝖨𝖥])

cf. Robins et al. (1994); Bang & Robins (2005); many others later. 



Understanding Double Robustness
The DR assumption says that the nuisance functions are estimated at a parametric rate  
in product: 

.∥ ̂π − π∥𝖫𝟤(ℙ)∥ ̂μ𝟢 − μ𝟢∥𝖫𝟤(ℙ) = 𝗈ℙ(𝟣/ 𝗇)

24 cf. Horowitz (2009); Kennedy (2018) 

In particular, 

• Both nuisance functions can be learned at a nonparametric rate, say, ,  
such that the product of their rates of convergence is .  

• Allows complex nuisance learners, such as the super learner (stacking) and additive 
models. (In practice, random forests & deep neural nets can also work.)

𝗈ℙ(𝗇−𝟣/𝟦)
𝗈ℙ(𝟣/ 𝗇)



Learning the Nuisance Functions via Cross-Fitting

25 cf. Robins et al. (2008); Zheng & van der Laan (2011); Chernozhukov et al. (2018)

Data Split #1 
(𝗇/𝟤)

Data Split #2 
(𝗇/𝟤)

Fit  on #1̂π(𝟣), ̂μ(𝟣)
𝟢

Fit  on #2̂π(𝟤), ̂μ(𝟤)
𝟢

Compute 
̂𝖨𝖥(𝟣)(𝖣𝖺𝗍𝖺𝟤)

Compute 
̂𝖨𝖥(𝟤)(𝖣𝖺𝗍𝖺𝟣)

Computing  requires learning the nuisance functions  and  from data: 

; . 

Cross-fitting (Robins et al., 2008) allows us to learn them without losing sample efficiency.

̂𝖨𝖥 π μ0

̂π(𝗑) = ℙ̂(𝖱 = 𝟣 ∣ 𝖷 = 𝗑) ̂μ𝟢(𝗑) = �̂�[𝖲 ∣ 𝖱 = 𝟢, 𝖷 = 𝗑]

DR Estimate: 

 ψ̂𝖽𝗋 = 𝗇−𝟣
𝗇

∑
𝗂=𝟣

̂𝖨𝖥(𝖣𝖺𝗍𝖺𝗂)

̂𝖲𝖤 = 𝗇−𝟣 ̂𝖵𝖺𝗋𝗇( ̂𝖨𝖥)



DR Estimator for the Counterfactual Score Difference

Theorem (DR estimation of the CF score difference). Assume the identifying conditions 
hold & that the nuisance functions are estimated at a parametric rate in product: 

. 

Let . Assuming , the DR estimator is asymptotically 
normal, and its variance matches the nonparametric (and locally minimax) efficiency bound: 

An asymptotic CI for , or a hypothesis test for , can be constructed.

∥ ̂π𝖠 − π𝖠∥𝖫𝟤(ℙ)∥ ̂μ𝖠
𝟢 − μ𝖠

𝟢 ∥𝖫𝟤(ℙ) + ∥ ̂π𝖡 − π𝖡∥𝖫𝟤(ℙ)∥ ̂μ𝖡
𝟢 − μ𝖡

𝟢 ∥𝖫𝟤(ℙ) = 𝗈ℙ(𝟣/ 𝗇)

𝖨𝖥𝖠𝖡 = 𝖨𝖥𝖠 − 𝖨𝖥𝖡 ∥ ̂𝖨𝖥𝖠𝖡 − 𝖨𝖥𝖠𝖡∥ = 𝗈ℙ(𝟣)

Δ𝖠𝖡 𝖧𝟢 : ψ𝖠 = ψ𝖡
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.𝗇 (Δ̂𝖠𝖡
𝖽𝗋 − Δ𝖠𝖡) 𝖽⟶ 𝒩 (𝟢, 𝖵𝖺𝗋ℙ[𝖨𝖥𝖠𝖡])

cf. Robins et al. (1994); Bang & Robins (2005); many others later. 

Proof:  is an EIF for  and  is an EIF for      is an EIF for .𝖨𝖥𝖠 𝔼[𝖲𝖠] 𝖨𝖥𝖡 𝔼[𝖲𝖡] ⟹ 𝖨𝖥𝖠𝖡 = 𝖨𝖥𝖠 − 𝖨𝖥𝖡 Δ



How Can We Address the Positivity Condition?
• Positivity violations can affect the validity and efficiency of the estimator. 

• Yet, in practice, classifiers may abstain deterministically on certain inputs. 

• Argument 1: unidentifiability & a need for a policy-level approach. 

• If a governing body seeks to audit commercial softwares for safety-critical 
tasks, then they must require vendors to match a level of positivity. 

• Argument 2: stochastic abstentions can improve performances. 

• Kalai & Kanade (2021) showed that stochastic abstentions can improve 
out-of-distribution (OOD) performance of abstaining classifiers. 

• Schreuder & Chzhen (2021) derived a stochastically abstaining classifier 
that achieves good performance subject to a fairness constraint.  

27

For 0.2,  
the miscoverage rate of a 95% CI 

rises above the intended level.

ϵ <



Experiments



Simulated Experiment: CI Miscoverage & Width
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DR CI achieves the correct miscoverage rate (small bias), and  
its width is half the width of the IPW CI (small variance).

Two abstaining classifiers, depicted using their decision 
boundary (orange), predictions (●/▲), and abstentions (x).

A: linear classifier with the  
optimal decision boundary.

B: biased classifier  
with a curved boundary.

95% CI’s Plug-in IPW DR

Random  
Forest

Miscoverage 0.64 0.14 0.05

Width 0.02 0.13 0.07

Super  
Learner

Miscoverage 0.91 0.03 0.05

Width 0.01 0.12 0.06

̂π / ̂μ𝟢

CI Miscoverage: rate of the 95% CI not covering the true , based on accuracy.  
(Blue: valid miscoverage.) 

Width: upper minus lower confidence bound. 
Both averaged over 1,000 repeated simulations.

Δ𝖠𝖡



Simulated Experiment: Power Analysis
Setup: score difference ( ) grows larger as the 
suboptimal classifier (B) become more biased.

Δ𝖠𝖡

30

Two abstaining classifiers, depicted using their decision boundary (orange),  
predictions (●/▲), and abstentions (x). =0.1.Δ𝖠𝖡

Power (rejection rate) of the hypothesis test for .  
 increases as B shifts farther away from A.

𝖧𝟢 : Δ𝖠𝖡 = 𝟢
Δ𝖠𝖡



Real Data Experiment: Comparing VGG-16 Classifiers on CIFAR-100

• Setup: We compare abstaining classifiers based off of a pre-trained VGG-16 deep 
convolutional neural network* for the CIFAR-100 dataset. Evaluation set size is 5,000. 

• Nuisance functions ( ) are learned on top of the pre-trained VGG-16 network, 
but they each use a different output layer (learned via cross-fitting).

̂π𝖠, ̂μ𝖠
𝟢 , ̂π𝖡, ̂μ𝖡

𝟢

31 *reproduced version from https://github.com/chenyaofo/pytorch-cifar-models.

Comparing VGG-16-Based Abstaining Classifiers on CIFAR-100 (n=5,000) using the Brier score.  
Estimation target: ; null hypothesis .Δ𝖠𝖡 := ψ𝖠 − ψ𝖡 𝖧𝟢 : Δ𝖠𝖡 = 𝟢

https://github.com/chenyaofo/pytorch-cifar-models


Summary of Contributions
• We propose the counterfactual score, a novel evaluation metric for black-box abstaining 

classifiers that assess the expected score had the classifier not been allowed to abstain. 

• The score and its framework reveals an underexplored connection between abstaining 
classifiers, black-box evaluation, and missing data / causal inference. 

• We formalize the identifying assumptions (MAR and positivity) for the score and give 
examples of settings in which they can be justified. 

• We develop nonparametrically efficient estimators for the counterfactual score 
(difference), and empirically show their validity & efficiency on simulated/real datasets.
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Thank You
Paper: https://arxiv.org/abs/2305.10564 
Code: https://github.com/yjchoe/ComparingAbstainingClassifiers 
NeurIPS Link: https://neurips.cc/virtual/2023/poster/72515 
YJ’s Webpage (for links to slides & poster): https://yjchoe.github.io/ 

https://arxiv.org/abs/2305.10564
https://github.com/yjchoe/ComparingAbstainingClassifiers
https://neurips.cc/virtual/2023/poster/72515
https://yjchoe.github.io/


Appendix



How Should We Compare Black-Box Abstaining Classifiers?

35

To Compare  
White-Box Abstaining Classifiers,  

Train & Compare Scores (Coverage)  
at a Fixed Coverage (Score) Level

Comparing Black-Box 
Abstaining Classifiers

Are Scores & Coverage 
Linearly Comparable?

Compare Selective Scores 
and Coverage

Compare Counterfactual Scores 
(This Work)

YESYES

Are Missing Predictions 
Meaningful?

NO

NO



Summary of Problem Formulations & Approaches
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Example #2: Secondary Diagnosis
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Black-Box 
Abstaining Classifier

COVID-19 Positive

COVID-19 Negative

Abstention (Rejection)

Sample lung CT scans of COVID/non-COVID patients from Ahuja et al. (2020).

Unlabeled Lung CT Scans

Human-in-the-loop, 

Algorithmic triage, 
…

I also don’t know…?

Human radiologists may still make mistakes or  
possess cognitive biases (Busby et al., 2018).

Positive 
(maybe)

Negative 
(maybe)



Example #3: Self-Driving Cars
Example (Alert the Driver): Let’s say a semi-autonomous car 
deploys an abstaining image classifier that aids its driving 
decisions. 

When it abstains, the car alerts the driver to take back the control. 
But… 

• Unfortunately, NHSTA* reports that Tesla Autopilot can alert 
the driver during the very last seconds before a crash. 

• Sometimes, the driver is just asleep or inattentive**.  
We’d still want to avoid accidents. 

Can we evaluate the abstaining classifier while accounting for its 
performance even on its abstentions?

38

“Tesla Driver Caught On Camera Apparently 
Asleep At The Wheel” - NBC Nightly News 

(Sep 9, 2019)

**Research shows that the lack of active involvement correlates  
with tardy responses to takeover requests (Vogelpohl et al., 2019).

*NHSTA: National Highway Traffic Safety Administration (U.S.)



Abstentions as Missing Predictions
These examples illustrate cases where abstentions are really missing 
predictions that we’d like to know. 

• The free-trial service example shows how the missing predictions have 
direct uses in the future. 

• The self-driving car & secondary diagnosis examples shows how the 
missing predictions may be used under a failure mode. 

• The LLM example shows how missing predictions may be utilized for the 
assessment of internal biases.
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Comparison with Existing Evaluation Metrics
The counterfactual score  can be decomposed in the following way: 

 
The first term is a product of the selective score and coverage (second term is ignored). 

Condessa et al. (2017) proposes the classification quality score , assuming : 

 

This would penalize abstaining on good predictions, which is not ideal in our applications. 
But it can also be estimated given our tools, as  is an observable quantity.

ψ = 𝔼[𝖲]

θ 𝖲 ∈ [𝟢, 𝟣]

θ = 𝔼[𝖲 ∣ 𝖱 = 𝟢]ℙ(𝖱 = 𝟢) + 𝔼[𝟣 − 𝖲 ∣ 𝖱 = 𝟣]ℙ(𝖱 = 𝟣) .

θ + ψ
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 ψ = 𝔼[𝖲 ∣ 𝖱 = 𝟢]ℙ(𝖱 = 𝟢) + 𝔼[𝖲 ∣ 𝖱 = 𝟣]ℙ(𝖱 = 𝟣) .



Simulated Experiment: Data & Predictions
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̂π / ̂μ𝟢

Two abstaining classifiers,  
depicted using their decision boundary (orange),  

predictions (●/▲), and abstentions (x).

A: linear classifier with the  
optimal decision boundary.

B: biased classifier  
with a curved boundary.



Simulated Experiment: Full Results
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With sufficiently flexible nuisance learners,  
DR CI achieves the correct miscoverage rate (small bias), and  

its width is half the width of the IPW CI (small variance).

*Not to be confused with the coverage of an abstaining classifier.

Two abstaining classifiers,  
depicted using their decision boundary (orange),  

predictions (●/▲), and abstentions (x).

A: linear classifier with the  
optimal decision boundary.

B: biased classifier  
with a curved boundary.

95% CI’s Plug-in IPW DR

Linear/Logistic
Miscoverage 1.00 0.76 1.00

Width 0.00 0.09 0.04

Random Forest
Miscoverage 0.64 0.14 0.05

Width 0.02 0.13 0.07

Super Learner
Miscoverage 0.91 0.03 0.05

Width 0.01 0.12 0.06

̂π / ̂μ𝟢

CI Miscoverage*: rate of the 95% CI not covering the true , based on accuracy. 
(Blue: valid miscoverage.) Width: upper minus lower confidence bound. 

Both averaged over 1,000 repeated simulations.

Δ𝖠𝖡



Details for the CIFAR-100 Experiment
• Scenario I: same base classifiers (pre-trained VGG-16) & different thresholds for the 

softmax response (SR) (at 0.8 vs. 0.5).  

. 

• Note that these are deterministic abstention rules (still works, as the two happen to abstain on  
similar examples and their scores on abstentions happen to be similar). 

• Scenario II: same base classifiers & different stochastic abstention rules (SR vs. Gini). 

• Scenario III: different base classifiers (1 vs. 2 output layers) & same abstention rules (SR). 

• Note: First half (5,000) of the “test set” is used to train the output layers. 

𝖲𝖱(p) = max
𝖼∈[𝖢]

𝗉𝖼

43



Asymptotic Confidence Sequences for Counterfactual Scores

• Leveraging the recent results by Waudby-Smith et al. (2021), we can further estimate the counterfactual scores of 
abstaining classifiers in an anytime-valid manner (i.e., at arbitrary stopping times). 

• Informally, an asymptotic confidence sequence (AsympCS) refers to a sequence of intervals that is an arbitrarily 
precise approximation to a non-asymptotic CS, as .𝗇 → ∞
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Theorem. Let  be the counterfactual score of an abstaining classifier. Assume an (i.i.d.) test set 
. Also, let  be the DR estimator. If the nuisance functions for  are estimated at a product 

 rate, then, for each , 

 

where  is the variance estimate of .

ψ = 𝔼[𝖲]
{(𝖷𝗂, 𝖸𝗂)}𝗇

𝗂=𝟣 ψ̂𝖽𝗋 ψ̂𝗍

𝗈𝖺.𝗌.( 𝗇−𝟣𝗅𝗈𝗀 𝗅𝗈𝗀 𝗇) α ∈ (𝟢, 𝟣)

𝖢𝗇 := ψ̂𝖽𝗋 ± ̂𝖵𝖺𝗋𝗇( ̂𝖨𝖥) 𝗇−𝟤(𝟤𝗇 ̂σ𝟤
𝗇 + 𝟣) ⋅ 𝗅𝗈𝗀 (α−𝟣 𝗇 ̂σ𝟤

𝗇 + 𝟣) forms a (𝟣 − α)-level AsympCS for ψ .

̂σ𝟤
𝗇 ψ̂𝗇
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