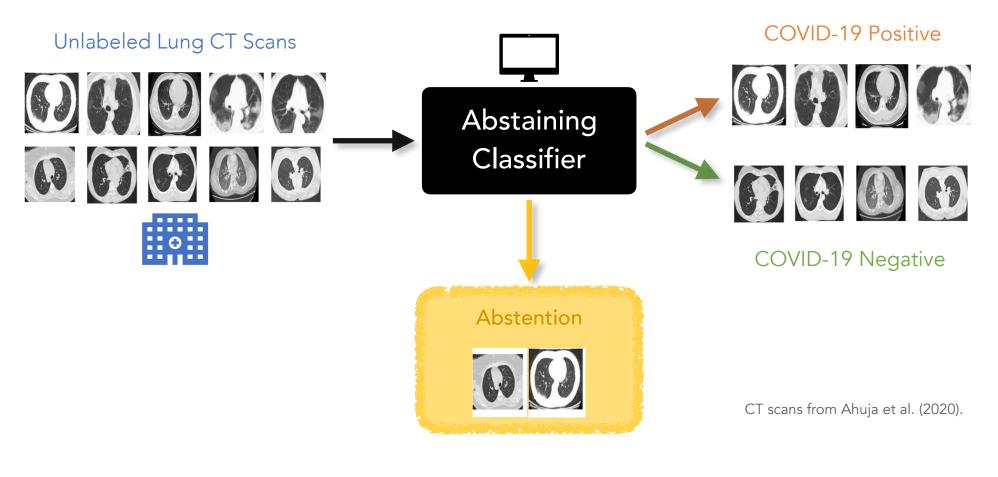
Counterfactually Comparing Abstaining Classifiers

Yo Joong "YJ" Choe (UChicago), Aditya Gangrade (UMichigan), Aaditya Ramdas (Carnegie Mellon University)

Abstaining classifiers

Abstaining classifiers (Chow, 1957) have the option to withhold their predictions on inputs that they are uncertain about. They are used in safety-critical applications, such as medical imaging.



How can we evaluate and compare black-box abstaining classifiers?

≡ Google Cloud	Q 🌐 English 🕶 🔃 🔯	Services on AW					
Al and machin	e learning products	machine learning applicatio					
Innovative AI and machine learning products, solutions, and services powered by Google's research and technology. New customers get <u>\$300 in free credits</u> to run, test, and deploy workloads.		hands of every developer, data	Product Benefits AWS offers the broadest and deepest set of machine learning services and supporting cloud infrastructure, putting machine learning in the hands of every developer, data scientist and expert practitioner. Named a leader in Gartner's Cloud AI Developer services' Magic Quadrant, AWS is helping tens of thousands of customers accelerate their machine learning journey.				
Get started for	free Contact sales	Text-to-Speech	Add speech to text capabilities to applications.	Machine Learning Build, train, and deploy machine Jearning models fast.	Translation Translate text using a neural machine translation service.		

- Suppose we want to evaluate and compare black-box ML prediction services for an image classification task.
- During the free trial, each service deploys an abstaining classifier. Each classifier utilizes its own (unknown) abstention mechanism.
- Once you pay for each service, it will use a non-abstaining classifier. How can we compare the expected accuracies without accessing them?

To the evaluator, abstentions are just missing predictions!

The counterfactual question

How would we compare black-box abstaining classifiers, had they not been allowed to abstain?

We propose a **black-box** evaluation framework for abstaining classifiers by leveraging tools from *missing data analysis* (Rubin, 1976) and *nonparametric causal inference* (e.g., Robins et al., 1994).

The counterfactual approach

An abstaining classifier (AC) is a pair of functions (f, π) , where

- $f: \mathcal{X} \to \mathcal{Y}$ is the base classifier (f(X): prediction);
- $\pi : \mathscr{X} \to [0, 1]$ is the abstention mechanism ($\pi(X)$: prob. of abstention).

Protocol (Evaluating a black-box abstaining classifier).

- 1. Classifier receives an input X.
- 2. Classifier decides whether or not it will abstain: $R \mid X \sim Ber(\pi(X))$.
 - If R = 0, then Evaluator sees its prediction & score: S = s(f(X), Y).
 - If R = 1, then Evaluator does NOT see its score (S is missing).

Step 1: Defining the counterfactual score

The counterfactual score ψ of an AC (f, π) is its expected score:

$$\psi \stackrel{\mathsf{def}}{=} \mathbb{E}[\mathsf{S}]$$
 .

For comparison, estimate $\Delta = \psi^{A} - \psi^{B} = \mathbb{E}[S^{A} - S^{B}]$.

Step 2: Identification

Under identifying conditions,

 $\psi = \mathbb{E}[\mu_0(X)], \text{ where } \mu_0(X) = \mathbb{E}[S \mid X, R = 0].$

What are the identifying conditions?

- **1. Missing at random (MAR):** $S \perp R \mid X$.
 - Satisfied as long as the evaluation set is *independent* of training set.
- **2.** Positivity: There exists $\varepsilon > 0$ such that $\pi(X) \le 1 \varepsilon$.
 - Satisfied as long as the classifier does not *deterministically* abstain on an input region. (Otherwise it's impossible to estimate the score!)

Step 3: Doubly robust estimation

Now, define the doubly robust (DR) estimator $\hat{\psi}_{dr}$:

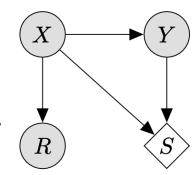
$$\hat{\psi}_{dr} = \frac{1}{n} \sum_{i=1}^{n} \left[\hat{\mu}_{0}(X_{i}) + \frac{1 - R_{i}}{1 - \hat{\pi}(X_{i})} \left(S_{i} - \hat{\mu}_{0}(X_{i}) \right) \right],$$

where $\hat{\mu}_0$ and $\hat{\pi}$ are nuisance function estimators (e.g., ensemble methods).

<u>Theorem (Informal)</u>. With sufficiently flexible nuisance function estimators $\hat{\mu}_0$ and $\hat{\pi}$, the DR estimator is **asymptotically normal and efficient for** ψ :

$$\sqrt{\mathsf{n}}\left(\hat{\psi}_{\mathsf{dr}} - \psi\right) \leadsto \mathscr{N}\left(\mathsf{0}, \mathsf{Var}_{\mathbb{P}}(\mathsf{IF})\right).$$

The nuisance functions are estimated via cross-fitting (Robins et al., 2008).

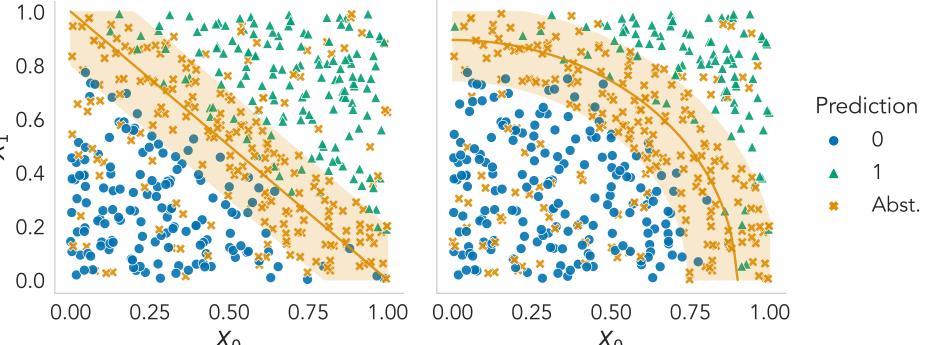


Experiments

Simulated data: Comparing abstaining binary classifiers (MAR)

A: linear classifier with the <u>optimal</u> decision boundary.

B: <u>biased</u> classifier with a curved boundary.



Two abstaining classifiers, depicted using their decision boundary (orange), predictions (\bullet/\blacktriangle), and abstentions (x).

Nuisance fn.	95% Cl's	Plug-in	IPW	DR
Random Forest	Miscoverage	0.64	0.14	0.05
	Width	0.02	0.13	0.07
Super Learner	Miscoverage	0.91	0.03	0.05
	Width	0.01	0.12	0.06

Miscoverage and width of the 95% CI for estimating Δ^{AB} , based on *accuracy*. Baselines: plug-in & IPW. N=2,000; averaged over 1,000 repeated simulations.

The doubly robust CI achieves the correct miscoverage rate while having a small width (i.e., it is efficient).

Real data: comparing abstaining CNNs for image classification

Base clf.	Abstention	Δ	Reject null?	95% CI
Same	Different	0.000	Νο	(-0.014, 0.008)
Different	Same	-0.029	Yes	(-0.051, -0.028)

Hypothesis tests and 95% CIs for comparing abstaining classifiers built using pre-trained VGG-16 networks on CIFAR-100 dataset (N=5,000). Null: $\Delta = 0$.

The theory is applicable to testing or estimating the counterfactual score difference between nonparametric predictors.

Find us online!

