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Abstaining classifiers

Abstaining classifiers (Chow, 1957) have the option to withhold their
predictions on inputs that they are uncertain about. They are used in

safety-critical applications, such as medical imaging.
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How can we evaluate and compare

black-box abstaining
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The counterfactual approach

An abstaining classifier (AC) is a pair of functions (f, 7), where

o f: X — % isthe base classifier (f(X):

e 7 : L — [0, 1] is the abstention mechanism (z(X): prob. of abstention).

prediction);

Protocol (Evaluating a black-box abstaining classifier).

1. Classifier receives an input X.

2. Classifier decides whether or not it will abstain: R | X ~ Ber(z(X)).
e [f R =0, then Evaluator sees its prediction & score: S = s(f(X), Y).

e [f R =1, then Evaluator does NOT see its score (S is missing).
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Step 1: Defining the counterfactual score

The counterfactual score y of an AC (f, m) is its expected score:

For comparison, estimate A = yh — b

Step 2: Identification

Under identitying conditions,
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Simulated data: Comparing abstaining binary classifiers (MAR)

A: linear classifier with the

optimal decision boundary.

B: biased classifier
with a curved boundary.
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Two abstaining classifiers, depicted using their decision boundary (orange),

predictions (e/A), and abstentions (x).
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« Suppose we want to evaluate and compare black-box ML prediction 1. Missing at random (MAR): S 1L R | X.

e Satisfied as long as the evaluation set is independent of training set.

. . ; Baselines: plug-in & IPW. N=2,000; averaged over 1,000 repeated simulations.
What are the identifying conditions? a G e R Rl A At P A A P RS B

The doubly robust CI achieves the correct miscoverage rate

while having a small width (i.e., it is efficient).
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Real data: comparing abstaining CNNs for image classification

services for an image classification task.
 During the free trial, each service deploys an abstaining classifier. 2. Positivity: There exists € > 0 such that #(X) < 1 —e.
Each classifier utilizes its own (unknown) abstention mechanism. e Satisfied as long as the classifier does not deterministically abstain on

« Once you pay for each service, it will use a non-abstaining classifier. an input region. (Otherwise it's impossible to estimate the score!)
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How can we compare the expected accuracies without accessing them? Step 3: Doubly robust estimation

. . A Same Different 0.000 No (-0.014, 0.008)
To the evaluator, abstentions are just missing predictions! Now, define the doubly robust (DR) estimator yg,:
O S A B AN IS Y B FN IS PRSI Y SIS IRy Different Same -0.029 Yes (-0.051, -0.028)
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pre-trained VGG-16 networks on CIFAR-100 dataset (N=5,000). Null: A = 0.
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How would we compare black-box abstaining classifiers, where [i; and 7 are nuisance function estimators (e.g., ensemble methods).
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had they not been allowed to abstain? 1 The theory is applicable to testing or estimating the

' Theorem (Informal). With sufficiently flexible nuisance function estimators counterfactual score difference between nonparametric predictors. |
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| iy and 7, the DR estimator is asymptotically normal and efficient for y: St eSS B it ol e St e

We propose a black-box evaluation framework for abstaining classifiers by

leveraging tools from missing data analysis (Rubin, 1976) and \/ﬁ (‘/Afdr — 1//) ~ N (O, VarP(IF)) :
Find us online!

nonparametric causal inference (e.g., Robins et al., 1994). ‘
. The nuisance functions are estimated via cross-fitting (Robins et al., 2008). :.
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