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1. Introduction
Recurrent neural networks (RNNs) are the primary deep
learning method for sequential data. In recent years, so-
phisticated versions of RNNs have shown success in vari-
ous applications, including natural and syntactic languages
(Graves, 2013; Sutskever et al., 2014; Vinyals et al., 2015;
Kaparthy, 2015), music (Boulanger-Lewandowski et al.,
2012), and videos (Srivastava et al., 2015).

In the presence of unsupervised sequential data, such as
long passages of text with no labels, RNNs can model the
generative process of the sequential data by learning to esti-
mate the distribution of the next item in the sequence given
all the previous ones. This is the key aspect of RNNs that
allows them to “generalize” by generating sequences that
come from the conditional distribution. This aspect also
opens up connections to existing statistical models such as
state space models and hidden Markov models. These ex-
isting models also perform the same task within the prob-
abilistic graphical model framework. Recently, there has
been work that attempts to formalize such connections
(Mohamed, 2015; Andreas, 2016).

Our paper first formalizes the notion of RNNs as generative
models in a fully probabilistic framework. This involves
re-casting the standard computational model for RNNs as a
graphical model. We show that the connection can be made
precise, even when sophisticated mechanisms such as long
short-term memory (Hochreiter & Schmidhuber, 1997) and
deep architectures (Pascanu et al., 2014) are used.

We then provide a formal description of RNNs as nonlin-
ear approximations of inference algorithms in probabilistic
models. We first formalize the idea that RNNs are non-
linear approximations of the forward algorithm in hidden
Markov models that have many hidden states.1 We then
establish the connection between RNNs and particle filters
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1We first learned about this idea from Prof. Jason Eisner’s talk
at the LTI Colloquium at CMU.

for state space models. In particular, we show that a class
of RNNs can be viewed as approximations of the inference
procedure via particle filters. This development is in line
with other views of RNNs as inferential procedures (An-
dreas, 2016).

2. Background and Related Work
Throughout the paper, we consider the problem of mod-
eling sequential data of the form (x1, . . . , xT ) ∈ X T for
some domain X and time length T . Here, we assume that
we have n independent observations, each having poten-
tially different lengths Ti. When necessary, we denote each
sequence as (x(i)1 , . . . , x

(i)
Ti
) ∈ X T for i = 1, . . . , n.

2.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) (Rumelhart et al., 1985;
Werbos, 1988) are a class of neural networks that can pro-
cess sequential data. In the context of our problem, RNNs
can be used to predict the next item xt+1 in the sequence
given x1, . . . , xt, for every t = 1, . . . , T − 1. Assuming
a single layer, an RNN that predicts the next item in se-
quences can be defined as

hs = fα(hs−1, xs) ∀s = 1, . . . t

xt+1 = gβ(ht)

for some nonlinear functions fα and gβ that are
parametrized by vector-valued parameters α and β respec-
tively. Note that the functions are independent of time. The
corresponding computational graph is drawn in Figure 1.

h1 h2 h3 · · · hT

x1 x2 x3 · · · xT

Figure 1. The computational graph of recurrent neural networks.
Note that this is not a graphical model representation and edges
represent deterministic computations.
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A simple RNN defines these functions as

fα(hs−1, xs) = Hf (Wxs + Uhs−1 + b) ∀s = 1, . . . t

gβ(ht) = Hg(V ht + c)

where α = (W,U, b) and β = (V, c) for some weight ma-
trices W , U , and V as well as bias vectors b and c. Hf and
Hg are nonlinear activation functions such as the sigmoid
function, the hyperbolic tangent (tanh), or the rectified lin-
ear unit (ReLU).

A simple RNN can be trained using backpropagation, but
when T is large it is not effective in modeling long-term
dependencies due to the problem of vanishing gradients.
Long short-term memory (LSTM) (Hochreiter & Schmid-
huber, 1997) and gated recurrent units (GRUs) (Cho et al.,
2014) address this issue by defining fα to be an over-
parametrized function that preserves “memory” from the
distant past. LSTMs, GRUs and their variants are a large
part of RNN’s recent success in natural language process-
ing, speech recognition, and other real-world applications.

Stacked RNNs (Schmidhuber, 1992; El Hihi & Bengio,
1995; Graves, 2013), the most common variant of deep
RNNs, build up extra layers of hidden units that accept the
hidden units of the previous layer as their input sequences.
Other variants of deep RNNs (Pascanu et al., 2014) include
replacing the functions fα and gβ with deep feedforward
neural networks themselves.

2.2. State Space Models and Hidden Markov Models

State space models (SSMs) or dynamic linear models
(DLMs) are a class of probabilistic graphical models that
encode the dependency structure of sequential data by la-
tent variables that follow Markovian dynamics. Examples
of SSMs include hidden Markov models (HMMs) (Baum
& Petrie, 1966), in which observations and latent states are
assumed to be discrete, and linear Gaussian SSMs or the
Kalman filtering model (Kalman et al., 1960), in which ob-
servations and latent states are assumed to be Gaussian.

In order to probabilistically model sequential data, we first
introduce random variables X1, . . . , XT defined on X to
model observations x1, . . . , xT . We also introduce latent
variables H1, . . . ,HT to model the hidden states corre-
sponding to each item in the sequence. Then, the graphical
model representation of SSMs can be drawn as in Figure 2.

2.3. Particle Filters (Sequential Monte Carlo)

The particle filter (or sequential Monte Carlo) is a stochas-
tic inference strategy that can be applied to both HMMs and
SSMs. It is essentially a sequential importance sampling
algorithm with intermediate resampling steps. It approx-
imates the target distribution P (H1, . . . ,HT |x1, . . . , xT )
in an online fashion using a set of M weighted samples

H1 H2 H3 · · · HT

X1 X2 X3 · · · XT

Figure 2. The graphical model for state space models, including
hidden Markov models.
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Let q (Ht|Ht−1) denote a proposal distribution which is
equal to, or is similar to, P (Ht|Ht−1). Let H0 be arbi-
trary. For a state space model, the particle filter algorithm
is defined as follows.

• Propagate the particles H(i)
t ∼ q(Ht|Ht−1).

• Compute the weights

W
(i)
t = P (Ht|xt, Ht−1)/q(Ht|Ht−1).

• Normalize the weights such that
∑M
i=1W

(i)
t = 1.

• Resample to obtain M equally weighted particles(
H

(1)
1 , . . . ,H

(1)
t , 1/M

)
. . .
(
H

(M)
1 , . . . ,H

(M)
t , 1/M

)
.

Iterating the above steps for t = 1, . . . , T re-
sults in the approximation P (H1, . . . ,Ht|x1, . . . , xt) ≈∑M
i=1W

(i)
t δ

H
(i)
1:t

.

2.4. Related Work

While there is a lot of work on viewing recurrent neural net-
works as generative models, in the sense that the model can
read in certain sequential data and predict the most likely
future entries (Bengio et al., 2003; Graves, 2013), a formal
treatment of RNNs as fully probabilistic graphical models
has not been comprehensively studied.

In (Mohamed, 2015), Mohamed describes an interpretation
of a simple RNN as the maximum likelihood estimate of a
state space model that follows deterministic dynamics. In
this sense, RNNs can be viewed as a sophisticated version
of a state space model with potentially highly nonlinear
transition functions. However, the precise graphical model
representation of RNNs and their implicit conditional in-
dependence assumptions are not studied, and we explore
these relationships formally in Section 3.1.

In (Andreas, 2016), Andreas illustrates the inevitable and
often misleading entanglement of models and inference
procedures in neural networks, which he thus refers to as
monferences. He claims that, unlike standard probabilistic
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models in which the inference procedure is separated from
the model architecture, neural networks including RNNs
implicitly build a model-inference pair that cannot easily
be separately identified.

Andreas notes that, in recurrent neural networks, a hidden
unit cannot simply be viewed as encoding a single hidden
state as in a hidden Markov model, but rather encoding “the
whole table of probabilities” of the HMM forward algo-
rithm. In his experiments, an RNN trained on the hidden
states and observations generated from a pre-defined HMM
can learn to mimic the same predictions that an HMM
would make using its forward probabilities. However, no
mathematical formalization of the connection is made pre-
cise in the article, and we present formal characterizations
of this connection from a functional approximation point-
of-view (Section 3.2) and from an approximate inference
point-of-view (Section 3.3).

3. Probabilistic Interpretations of RNNs
3.1. RNNs as Generative Models

In this section, we formally develop a probabilistic graph-
ical model that is induced by a generative model formu-
lation of an RNN and discuss its properties. For simplic-
ity, we only consider the case of binary random sequences
(X1, . . . , XT ) ∈ {0, 1}T . This argument can be general-
ized for the general discrete random sequence case where
(X1, . . . , XT ) ∈ {1, . . . ,K}T for some K.

For given parametrized deterministic functions fα and gβ ,
such as sigmoidal activation units, LSTMs, and their deep
extensions, an RNN induces a set of procedures to model
the conditional distribution of Xt+1 given X≤t for all t =
1 . . . T . For instance, to model P (Xt+1 = 1|X≤t = x≤t),
an RNN first calculates a set of inner states {hs}ts=0 which
is recursively defined by

h0 := 0, hs = fα(hs−1, xs) ∀s = 1, . . . t

Then, the conditional probability is modeled by

P (Xt+1 = 1|X≤t = x≤t;α, β) = gβ(ht)

Note that ht depends on x1, . . . xt and α. By the follow-
ing equation, we can model the conditional distribution of
(X2, . . . , XT ) given X1 by using the RNN.

P (X2, . . . XT |X1) =

T−1∏
t=1

P (Xt+1|X≤t)

For given n training sequences {x(i)1 , . . . x
(i)
Ti
}ni=1, we can

estimate parameters (α, β) by using the maximum condi-

tional likelihood estimator

(α̂, β̂) = argmax
α,β

n∑
i=1

logP
(
x
(i)
2 , . . . x

(i)
Ti
|x(i)1 ;α, β

)
= argmax

α,β

n∑
i=1

Ti−1∑
t=1

logP
(
x
(i)
t+1|x

(i)
≤t;α, β

)

Remark 1. The RNN does not model the marginal dis-
tribution of X1. To model the full joint distribution of
(X1, . . . , XT ), we need to introduce an additional model
for P (X1).

H1 H2 H3 · · · HT

X1 X2 X3 · · · XT

Figure 3. A fully probabilistic graphical model representation of
recurrent neural networks.

Given the generative formulation of an RNN, we can de-
rive a graphical model interpretation based on the graph G
described in the figure 3.

Remark 2. The graphical model in Figure 3 is also gen-
erative, in the sense that we can sample observations and
hidden states from the joint model (givenX1). However, we
distinguish it from the standard generative formulation be-
cause it is also a probabilistic graphical model that further
encodes conditional independence relationships.

The structure of the graph G induces the following condi-
tional independence relationships.

Xt+1 |= X≤t | Ht ∀t = 1, . . . , T − 1

Ht |= X≤t−1 | Ht−1, Xt ∀t = 2, . . . , T − 1

That is, the future observation is independent to current
and past observations given the current hidden state, and
the current hidden state is independent to past observations
given the past hidden state and current observation.

For given RNN parameters (α, β), we can define a graphi-
cal modelM(G;α, β) which has the graph structureG and
the following parameterizations

P (Xt+1 = 1|Ht = ht) = gβ(ht)

P (Ht|Ht−1 = ht−1, Xt = xt) = δ (Ht = fα(ht−1, xt))

P (H1|X1 = x1) = δ (H1 = fα(0, x1))

Remark 3. Unlike in the generative model parametriza-
tion of an RNN in which {ht}Tt=1 are deterministic func-
tions of {xt}Tt=1, the graphical model parameterization do
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not assume such deterministic relationships between the
random variables {Ht}Tt=1 and {Xt}Tt=1.

These particular parameterizations induce additional con-
ditional independence relationships which do not necessar-
ily hold for general graphical models based on G.

Proposition 4. Under the graphical model parametriza-
tion, the graphical modelM(G;α, β) has the following ad-
ditional properties.

Ht |= X≥t+1 | Ht−1, Xt ∀t

which implies that the current hidden state is not only inde-
pendent to the past observations, but it is also independent
to the future observations, given the past hidden state and
current observation.

Proof. Conditioned on (Ht−1 = ht1 , Xt = xt), Ht has
a point mass on fα(ht−1, xt). Since a constant variable is
independent to any other variables, the result follows.

Based on Proposition 4, we can show that the graphical
model M(G;α, β) is equivalent to the RNN in the genera-
tive model point of view.

Theorem 5. The graphical model M(G;α, β) described
above induces the same conditional distribution of
(X2, . . . , XT ) givenX1 as one induced by the correspond-
ing RNN.

Proof. To distinguish the RNN and the graphical model
cases, let {h∗s}ts=0 be the set of inner states in the RNN
calculated on a realization {xs}ts=1 of {Xs}ts=1. To prove
the theorem, it is enough to show that

P (Xt+1 = 1|X≤t = x≤t) = gβ(h
∗
t )

which is followed by

P (Xt+1 = 1|x≤t)

=

∫
P (Xt+1 = 1|ht, x≤t)P (Ht = ht|x≤t) dht

=

∫
P (Xt+1 = 1|ht, x≤t)×

P (Ht = ht|ht−1, x≤t)P (Ht−1 = ht−1|x≤t) dhtht−1

=

∫
P (Xt+1 = 1|ht)×

P (Ht = ht|ht−1, xt)P (Ht−1 = ht−1|x≤t) dhtdht−1

=

∫
gβ(ht)×

δ(ht = fα(ht−1, xt))P (Ht−1 = ht−1|x≤t) dhtdht−1

=

∫
gβ(fα(ht−1, xt))P (Ht−1 = ht−1|x≤t) dht−1

=

∫
gβ(fα(ht−1, xt))P (Ht−1 = ht−1|ht−2, x≤t)×

P (Ht−2 = ht−2|x≤t) dht−1dht−2

=

∫
gβ(fα(ht−1, xt))P (Ht−1 = ht−1|ht−2, xt−1)×

P (Ht−2 = ht−2|x≤t) dht−1dht−2

=

∫
gβ(fα(ht−1, xt))δ(ht−1 = fα(ht−2, xt−1)×

P (Ht−2 = ht−2|x≤t) dht−1dht−2

=

∫
gβ(fα(fα(ht−2, xt−1), xt))×

P (Ht−2 = ht−2|x≤t) dht−2
...
= gβ(h

∗
t )

3.2. RNNs as Nonlinear Approximations of Forward
Algorithms in HMMs with a Large Number of
Hidden States

Let us assume that we have an HMM with binary ob-
servable random sequence {X1, . . . , XT } ∈ {0, 1}T
and hidden units with m-hidden states {H1, . . . ,HT } ∈
{1, . . . ,m}T . The forward algorithm is used to update the
belief state, which is the probability of a hidden unit given
the previous and current observations. Formally, we define
the belief state at time t by

αt(ht) := P (Ht = ht, X≤t = x≤t), ∀t

Since each Ht has m possible hidden states, we can repre-
sent αt(·) := αt ∈ [0, 1]m as a vector in them-dimensional
unit cube. Then, update rules for belief states can be ex-
pressed by linear mappings f̃x : [0, 1]m → [0, 1]m, x ∈
{0, 1} defined by

αt+1 = Dxt+1
V αt := f̃xt+1

(αt), ∀t

where Dx, V ∈ [0, 1]m×m are given by

D1 = diag [P (Xt = 1|Ht = 1), . . . , P (Xt = 1|Ht = m)]

D0 = diag [P (Xt = 0|Ht = 1), . . . , P (Xt = 0|Ht = m)]

Vij = P (Ht+1 = i|Ht = j)

Note that Dx and V are well-defined because emission
and transition probabilities do not depend on time t in
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the HMM. Once we have f̃x and the initial belief state
α0 := (P (H1 = 1), . . . , P (H1 = m)) ∈ [0, 1]m, we can
calculate all belief states {αt}Tt=1. Then, by using each be-
lief state, we can calculate the conditional distribution of
Xt+1 given the previous observations by

P (Xt+1 = 1|X≤t = x≤t)

=
P (Xt+1 = 1, X≤t = x≤t)

P (X≤t = x≤t)

=

∑m
j=1 P (Ht+1 = j,Xt+1 = 1, X≤t = x≤t)∑m

j=1 P (Ht = j,X≤t = x≤t)

=
1>f̃1(αt)

1>αt
=: g̃(αt)

If the number of hidden states m is extremely large, the
HMM can model any dependency structure over the ob-
servable sequence with enough precision. However, to de-
scribe the corresponding high-dimensional linear dynamics
of the sequence of belief states {αt}Tt=1, we need estimate
O(m2) parameters which become intractable for extremely
large m.

In this case, we can interpret RNNs as procedures provid-
ing low-dimensional non-linear approximations for high-
dimensional linear dynamics of the belief states.

Proposition 6. Let {at}Tt=1 be a sequence of belief states
induced by f̃x, g̃ in an HMM with m hidden states. For a
given class of RNNs with fα, gβ , if there exist α∗, β∗ and
φ : Rm → Rk satisfying the following conditions

C.1 φ(α0) = h0

C.2 φ ◦ f̃x = fα∗,x ◦ φ, ∀x

C.3 g̃β = gβ∗ ◦ φ

then {at}Tt=1 and {ht}Tt=1 are equivalent in the sense that
the two sequences yield the same calculations of condi-
tional probabilities {P (Xt+1 = 1|X≤t = x≤t)}T−1t=1 .
Here, fα,x(·) = fα(·, x), k is the dimension of ht in the
RNN, and {ht}Tt=1 is the sequence of hidden units in the
RNN with parameters (α∗, β∗) calculated using a given ob-
servation sequence {xt}Tt=1.

Proof. Let us first show that ht = φ(αt), ∀t. By the first
condition, it holds for t = 0. For t > 0, note that

φ(αt+1) = φ
(
f̃x(αt)

)
= fα∗,x (φ(αt)) by the C.2 condition
= fα∗,x(ht) by the induction assumption
= ht+1

Therefore, by the mathematical induction, we get ht =
φ(αt), ∀t. From this relationship and the C.3 condition,
the result is followed by

PHMM(Xt+1 = 1|x≤t) = g̃(αt)

= gβ∗ (φ(αt))

= gβ∗(ht)

= PRNN(Xt+1 = 1|x≤t)

Remark 7. Once we can guarantee that the conditions in
Proposition 6 are satisfied by a function φ, we do not need
to find φ explicitly to construct the RNN.

If we use sufficiently rich non-linear function classes for
fα and gβ , the conditions in Proposition 6 can be satisfied.
Thus, the RNN can model HMMs with a large number of
hidden states exactly. However, if function class used is too
rich, RNNs can easily over-fit the data which make large
variances in estimations. If the function class used is not
the rich enough, the conditions in Proposition 6 could be
significantly violated, resulting in large biases in predic-
tion. In practice, we can control sizes of functions classes
by varying the dimension of hidden units in RNNs with
fixed activation functions.

3.3. A Connection Between RNNs and Particle Filters
for HMMs/SSMs

In this section, we briefly comment on connections be-
tween the particle filter algorithm for HMMs and recurrent
neural networks. In particular, we show that if we treat the
particles of the particle filter as proxies for the hidden states
in a state space model, we get a graphical model structure
that is identical to that of a RNN. We also elaborate on the
functional form of this RNN.

Let H(1)
t , . . . H

(M)
t denote the the states of M particles of

a particle filter at time t (after re-sampling) which is tar-
geting an HMM (or SSM). By definition of the particle
filter, H(1)

t , . . . ,H
(M)
t depends on both the previous par-

ticles H(1)
t−1, . . . H

(M)
t−1 (through the propagation step) and

xt through the re-sampling step.

If when predicting xt+1, we let H(1)
t , . . . ,H

(M)
t act as the

true hidden state of the HMM/SSM, then our prediction
for xt+1 depends on H

(1)
t , . . . ,H

(M)
t . Combining these

dependencies, we get the graphical model depicted in Fig-
ure 4 below.

The graphical model in Figure 4 is equivalent to the one
depicted in Figure 3. Thus, we can interpret the defined
model as an RNN as follows.

The particles H(1)
t , . . . H

(M)
t (after re-sampling) are the

hidden units of the RNN at time t. The hidden state up-
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Figure 4. A graphical model depiction of a particle filter for a
HMM where the particles at the previous state act as a proxy for
hidden state of the HMM when doing forward prediction. Blue,
red, and black lines indicate propagation, re-sampling, forward
simulation, respectively.

date ht = fα(ht−1, xt) can be decomposed into two parts,
fpα (propagation) and frα (re-sampling), the two steps of
the particle filter. Here, fpα takes ht−1 as an input, and frα
takes (Gt, ht−1, xt) as an input, where Gt is the output of
fpα(ht−1) (the proposed state).

To make the connection with the particle filter more
explicit, fpα(ht−1) = (q∗α(H

(i)
t−1, h0))i=1...M , where

q∗α(H
(i)
t−1, h0) is the inverse cdf of a proposal distribution

q(·|hs−1) parameterized by α. Here, h0 can be thought of
as the random seed for the proposal, which is injected at
the beginning of the chain.

We define frα(h
∗
t , ht−1, xt) = (vi(Gt, ht−1, xt))i=1...M ,

where

vi(Gt, ht−1, xt) =

M∑
j=1

G
(j)
t I(ai(Gt, ht−1, xt) = j), (1)

ai(Gt, ht−1, xt) ∼ Multinomial
(
W (1), . . . ,W (M)

)
.

(2)

The stochasticity of the multinomial is removed by the seed
h0, and the values W are defined as in the weight calcula-
tions in the particle filter in Section 2.3. Note that α in-
cludes the parameters required to derive the weights.

We define gβ(ht) in our RNN to also involve two steps.
First, it samples a hidden state from the existing particles.
Then, it emulates a forward sample from the SSM given the
hidden state. We can use a similar inverse cdf approach as
above to make the function deterministic.

By construction, for a given α, β this definition of an RNN
emulates the performance of a particle filter with a set seed.

It has been difficult to further establish an RNN which tar-
gets a particle filter explicitly. We continue to explore this

avenue for future work.

4. Experiments
Given the theoretical nature of our project, we focus on ver-
ifying our claims of equivalence between models and/or in-
ference procedures using synthetic data. We implemented
recurrent neural networks using TensorFlow v1.1 (Abadi
et al., 2015) and hidden Markov models using hmmlearn
v0.2 (http://hmmlearn.readthedocs.org). The
particle filter was implemented in the open-source statisti-
cal package R.

In all of our experiments, we use n = 20000 when training
RNNs, mainly for computational reasons. Note that HMM
forward and particle filters rely on the knowledge of true
HMM parameters, i.e. they use infinitely many data points.
We expect that some of the large RNNs that appear to per-
form sub-optimally below can in fact perform as well given
more data points.

4.1. RNNs and the Forward Algorithm for HMMs

As our first experiment, we demonstrate the ability of
RNNs to replicate the forward algorithm for HMMs with-
out explicitly encoding the inference procedure. This
experiment reproduces the results from (Andreas, 2016),
which categorizes RNNs as monferences based on their
ability to imitate inference algorithms.

We start with a known hidden Markov model with 2 hid-
den states and 3 observed states. The initial, transition,
and emission probabilities were sampled from a Dirich-
let distribution with all parameters equal to 1. The goal
of the experiment is to infer the current hidden state Ht

given current and previous observations X1, . . . , Xt, for
each timestep t = 1, . . . , 8. The performance is evaluated
on a fixed test set of size ntest = 100 that is generated from
the true model.

Given that we know all parameters of the model, the ideal
inference procedure here is to apply the Bayes’ rule, which
for our particular model would correspond to the forward
algorithm. The algorithm computes the forward probability
p(Ht | X1, . . . , Xt) for each t, using the model parameters
(already known in this case) as well as the observation se-
quence up to time t. Once we have the forward probabili-
ties, we can make a prediction Ĥt by choosing the hidden
state with the highest forward probability.

Alternatively, also because we know the true model, we can
generate some training data from the true model and train
a unidirectional recurrent neural network, with the obser-
vation sequences as inputs and their corresponding hidden
states as outputs. We do not use the model parameters ex-
cept during data generation. This gives an inference proce-

http://hmmlearn.readthedocs.org
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Figure 5. Hidden state prediction accuracy of k-RNNs, where k
is the number of RNN hidden units (Ht ∈ Rk). Each RNN is
trained using the hidden and observed sequences generated from
a known 2-state, 3-outcome HMM. After training, the predicted
hidden states on a test set were exactly the same as those from the
HMM forward algorithm.

dure for the hidden states, in the sense that it also estimates
the forward probability p(Ht | X1, . . . , Xt). If the neu-
ral network is able to imitate the ideal inference procedure,
then we know that the neural network is capable of fig-
uring out the forward inference algorithm by itself (given
adequate amount of training data).

Figure 5 shows the results of this experiment using
RNNs containing different number of hidden units (k =
1, 20, 100). It shows that, given sufficiently many samples
generated from the true model (e.g. n = 20000), even
an RNN with a single hidden unit can recover the predic-
tions of the HMM forward algorithm exactly. Further, by
increasing the capacity of the RNN and properly adjusting
the learning rate, we can recover the HMM forward pre-
dictions with much less training data. These results con-
firm that RNNs can indeed replicate the forward algorithm
given sufficient amount of data from the true model instead
of its parameters.

It is important to note in Figure 5 that neither the HMM
forward predictions nor the RNN predictions are perfect.
In fact, the accuracy of HMM forward predictions can
be viewed as the information-theoretical optimum for the
ntest observation sequences, since the conditional proba-
bility is computed exactly from the true model itself. As
a result, while one may falsely assume that an RNN with
large enough capacity can achieve a 100% accuracy, it can-
not outperform this optimal prediction in this case. This
means that an RNN is able to capture the optimal inference
procedure by means of observing sufficiently many sam-
ples instead of directly using the true parameters.

4.1.1. INCREASING THE NUMBER OF HIDDEN STATES

An interesting follow-up task from the previous subsection
is to fix the capacity of the recurrent neural network and

Figure 6. Hidden state prediction using RNNs and the forward al-
gorithm for m-hidden-state HMMs across different m’s. Top:
Prediction accuracy of an RNN and the forward algorithm, as well
as the agreement of the two predictions. Purple line indicates
making the correct or identical prediction by chance. Bottom:
Number of parameters of an RNN and an HMM corresponding to
the prediction task.

see how well it can replicate the forward algorithm as the
number of hidden states in the true hidden Markov model,
denoted as m, increases. In Figure 6, we show the results
of this experiment for m = 2, 4, 8, . . . , 512.

In the top plot of Figure 6, it is shown that even
the information-theoretically optimal forward algorithm
(green) performs very poorly as the number of hidden states
in the HMM increases exponentially. The purple line indi-
cating prediction by chance also shows that the prediction
task gets exponentially harder at the same time. What is im-
portant here is that the RNN prediction accuracy (blue) still
matches the optimal accuracy, although the agreement be-
tween the two predictions (yellow) appear to decrease. The
agreement drops significantly when the number of HMM
parameters surpasses that of RNN (shown in the bottom
plot).

This first suggests that the RNN is still able to replicate
an inference algorithm that matches the performance of the
optimal algorithm. While the result may further appear to
suggest that the RNN is no longer capable of fully replicat-
ing the forward algorithm, we believe that the disagreement
is more likely due to the existence of many local optima,
with the forward algorithm being one of them. As a re-
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sult, the RNN instead gives an approximation of the HMM
forward algorithm, as we described in Section 3.2, that per-
forms equally well in the inferential task.

We finally note that the forward probability prediction task
is only the first half of eventually estimating the condi-
tional probability of the next sequence item, i.e. p(Xt+1 |
X1, . . . , Xt). We believe that it would be an interesting fu-
ture work to further compare this probability between the
classical and RNN-based approaches.

4.2. RNNs and Particle Filters

Building on the connection we showed in Section 3.3, we
now empirically investigate the interpretation of the hid-
den unit of an RNN as particles in a particle filter. Again,
we consider the task of estimating the hidden states of an
HMM. Here, we consider an HMM with five hidden states
and ten observed states. Again, the sequences observed are
of length eight.

Figure 7 demonstrates the performance of both an RNN and
a particle filter with varying numbers of particles/hidden
units. Like in the previous section, the RNN is trained using
many observations of hidden state/observed state pairs, and
the particle filter uses the parameters of the true model.

Clearly, for any fixed dimension shown, the RNN outper-
forms the particle filter in both prediction and learning op-
timal inference. This is evidence that the RNN is able to
learn a more efficient representation than the particle filter
given the same dimension. This does not necessarily mean
that an RNN is “better” than a particle filter, just that it is
not equivalent.

One obvious explanation for this is that the RNN has real-
valued hidden units whereas a particle filter has discrete-
valued hidden states. This means that a single RNN hidden
unit is much more expressive than a single particle. Thus,
despite the fact that the graphical model shown in Sec-
tion 3.3 corresponds to an RNN, an RNN’s hidden states
do not correspond to particles of a particle filter.

It is worth noting that with enough particles, a particle filter
will perform identically to the forward algorithm.

5. Conclusion and Discussion
In summary, we presented, formalized and empirically val-
idated three different probabilistic interpretations of re-
current neural networks. First, we showed that RNNs
can be interpreted as probabilistic graphical models that
involve deterministic transition probabilities between the
hidden variables. Second, RNNs can be understood as non-
linear approximations of the forward algorithm for hidden
Markov models. Third, RNNs can also be viewed as hav-
ing connections to the particle filter algorithm for hidden

Figure 7. Comparison of RNNs with the particle filters for a fixed
number of hidden units/particles. Top: Prediction accuracy of true
hidden states from RNN and from the particle filter Bottom: The
percentage of agreeance with an optimal inference procedure (the
forward algorithm)

Markov models and state space models, though the two are
not identical.

While these characterizations of RNNs are by no means
exhaustive, the three disparate views of RNNs already sug-
gest that there is more work to be done in building a clear
framework for these model inference pairs and, ultimately,
in better understanding what these neural networks are ac-
tually learning. We believe that further understanding these
characterizations and unifying them can help us compre-
hend and improve upon the shortcomings of existing RNN
architectures, as well as provide better theoretical guaran-
tees of their performance.
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