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1. Motivation
High-dimensional signals can often be represented as linear
combinations of elementary functions called atoms from
a collection called the dictionary, which can be either de-
signed or learned from the data. An overcomplete dictio-
nary, which consists of many similar atoms that are only
sparsely used, can allow for accurate and robust represen-
tations of the signals (Lewicki & Sejnowski, 2000).

The predominant guiding principle of dictionary design or
learning has been to encourage sparsity in the eventual rep-
resentation of the data. This principle reduces the problem
of signal decomposition to an `0- or `1-norm optimization
problem. While this approach is intuitive, in order to be
consistent, it requires strong assumptions on the nature of
the signals, such as mutual incoherence (Donoho & Huo,
2001) or restricted isometry (Candes & Tao, 2005) of the
overcomplete dictionary.

To tackle this issue, we propose a model that additionally
encourages diversity of the signal representation. The di-
versity of the learned dictionary atoms is induced by using
the determinantal point process (Kulesza & Taskar, 2012)
as a prior in the probabilistic formulation of the dictionary
learning problem. This approach is useful because it only
requires incoherence between each small set of atoms cho-
sen to represent each signal instead of the global incoher-
ence of the entire dictionary. Moreover, the probabilistic
formulation allows to view the model from a geometric per-
spective, as it defines a distribution over the Grassmannian.

2. Geometric Perspective
Representing data with an overcomplete dictionary results
in assigning different points to different subsets of atoms,
or equivalently to different linear or affine subspaces of the
ambient space. In this sense, dictionary learning seeks to
find a collection of potentially low-rank subspaces that rep-
resent the data effectively. Hence, it is closely connected to
the problem of subspace segmentation (Liu et al., 2010).

From the geometric perspective, dictionary learning iden-
tifies a collection of points on the Grassmann manifold
that correspond to the subspaces that contain the signal.
Our probabilistic model defines a random process on the
Grassmann manifold, where the regions of high posterior
probability are likely to be the subspaces that contain the
data. We believe that casting the problem into the geomet-
ric framework can help to formalize the intuitions behind
the diverse dictionaries and provably guarantee consistency
of the model under mild conditions such as incoherence of
only the sub-dictionaries that represent the signal.

3. Model and Discussion
Let X = {x1, . . . ,xn}, xi ∈ Rp be a collection of data.
Given a dictionary D ∈ Rp×m, we consider the following
data-generating process:

zi ∼ DPP(D>D),

ξi ∼ N (µ,Ψ),

εi ∼ N (0, σ2Ip),

xi = D(zi � ξi) + εi,

where εi is an unknown noise vector, zi ∈ {0, 1}m is an
indicator-vector that selects a sub-dictionary,� denotes the
element-wise multiplication, DPP(D>D) is the detemi-
nantal point process (DPP) with the kernel defined via the
dot product between the dictionary atoms. In this scenario,
DPP assigns probability to the subsets of atoms as follows:

P(z) =
det(D>[z]D[z])

det(D>D + Im)
.

Given the probabilistic model, one seeks a dictionary with
high posterior probability P(D|X). Currently, our model
is trained heuristically using a Monte-Carlo EM algorithm
and is able to recover the true overcomplete dictionaries
consistently, even when the dictionaries are not incoherent.
Ultimately, our goal is to cast the problem into the geomet-
ric framework to derive more tractable and provably accu-
rate inference strategies.
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