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This talk is based on an ongoing work in Professor John Lafferty’s
group, which includes Sabyasachi Chatterjee, YJ Choe (the
presenter), Max Cytrynbaum, Wei Hu, Yuxue Qi, and Min Xu.
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Regression

Suppose we have data (X1,Y1), . . . , (Xn,Yn) ∈ Rp × R, where
Xi = (Xi1, . . . ,Xip)T for each i = 1, . . . , n.
We assume that this data comes from a true regression function m

with a Gaussian noise εi
IID∼ N (0, σ2):

Yi = m(Xi ) + εi

for i = 1, . . . , n.
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Least-Squares Fit

We are interested in finding the function that minimizes the mean
squared error (MSE) within an assumed function space F :

m̂ = argmin
m∈F

1

n

n∑
i=1

(Yi −m(Xi ))2 .
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Nonparametric Regression

Data: (X1,Y1), . . . , (Xn,Yn) ∈ Rp × R
Model: Yi = m(Xi ) + εi , where εi

IID∼ N (0, σ2)
Goal: Minimize the MSE on F , i.e.

m̂ = argmin
m∈F

1

n

n∑
i=1

(Yi −m(Xi ))2

Nonparametric? Weak assumptions on F , i.e. (much) larger F :

smooth functions

convex functions
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Additive Models

Suppose p > 1. We assume that the true regression function m is
additive:

m(x) =

p∑
j=1

fj(xj)

for any x = (x1, . . . , xp)T ∈ Rp. We call each univariate function fj
components for j = 1, . . . , p.
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Why Additive Models?

Nonparametric

Tractable i.e. easier to fit

Interpretable

...(sometimes) even when the true model is not additive!

YJ Choe Additive Models with Sparse Convexity Patterns



Introduction
MISOCP Formulation

Lasso Formulation
Demo

Nonparametric Regression
Additive Models
Sparsity
Shape Constraints
The Convexity Pattern Problem

Interpretability (Generalized Additive Model, Logistic)
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(Data: pima from [Faraway, 2014] in R package faraway)
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The Backfitting Algorithm

Algorithm 1 The Backfitting Algorithm

Given {(Xi ,Yi )}ni=1 ⊆ Rp × R, where
∑n

i=1 Yi = 0

Initialize f̂j ≡ 0 for each j = 1, . . . , p
repeat

for j = 1, . . . , p (or in random order) do
Ri = Yi −

∑
k 6=j f̂k(Xik) for i = 1, . . . , n # Residuals

f̂j = fit.1d({(Xij ,Ri )}ni=1) # 1-D Regression on Residuals

f̂j = f̂j −mean({fj(Xij)}ni=1) # Mean Centering
end for

until change in fitted values is small
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Sparsity

With high-dimensional models, we usually hope that the fit is
sparse, i.e. we want it to be “effectively” a lower-dimensional
model which we can describe with only a few
parameters/components.
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Regularization

For now, assume the parametric linear regression model

Y = Xβ + ε.

Instead of the usual mean squared error, we minimize

1

n
‖Y − Xβ‖2

2 + λJ(β)

where J(β) is a penalty term, which is a function of the coefficient
vector β, and λ is some positive constant. This process is called
regularized least-squares; the general technique of adding a
penalty term to the objective is called regularization.
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`1-Regularization a.k.a. the Lasso

In particular, if we have the `1-penalty J(β) = ‖β‖1 =
∑p

j=1 |βj |,
we call this the Lasso [Tibshirani, 1996]. The objective becomes

1

n
‖Y − Xβ‖2

2 + λ ‖β‖1

Note: The Lasso is a quadratic program (QP).
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Lasso Induces Sparsity!

[Hastie et al., 2009]
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Sparse Additive Models (SpAM) [Ravikumar et al., 2009]

In terms of additive models, this would mean that we want a
majority of components to be identically zero.

Sparsity pattern: whether each component is sparse.
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Shape Constraints

We assume that functions in our model have certain shapes, e.g.

monotonicity

convexity, log-convexity, and SOS-convexity

In general, models with “nice” shape constraints come with more
tractable estimation techniques that still works for a variety of
examples.
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Convexity

A function f on a convex set C ⊆ Rp is convex if

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2).

for all x1, x2 ∈ C and λ ∈ [0, 1]. f is concave if −f is convex.

Convex/concave functions naturally appear in various cases. For
example, a utility function with diminishing returns is concave [Qi,
Xu, and Lafferty, to appear].
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The Problem

Here, we attempt to combine additive models with shape
constraints!

Specifically, we consider a regression model in which the true
function is additive and each component is either convex, concave,
or identically zero.
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Convexity Pattern

The model:

Yi =

p∑
j=1

[fj(Xij) + gj(Xij)] + εi

where, for each j = 1, . . . , p, fj is convex, gj is concave, and at
most one of fj and gj is nonzero.

That is, each component is either convex, concave, or identically
zero. We call this ternary pattern a sparse convexity pattern, or
simply, a convexity pattern.
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Example: 2 Components, 1 Convex & 1 Concave
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Example: 5 Components with 1 Sparse Component
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Example: 7 Components with 5 Sparse Components
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Example: 5 Components with 1 Sparse Component (2)

-1.0 -0.5 0.0 0.5 1.0

-6
-4

-2
0

2
4

6

Component 1

xj

y

-1.0 -0.5 0.0 0.5 1.0

-6
-4

-2
0

2
4

6

Component 2

xj

y

-1.0 -0.5 0.0 0.5 1.0

-6
-4

-2
0

2
4

6

Component 3

xj

y

-1.0 -0.5 0.0 0.5 1.0

-6
-4

-2
0

2
4

6

Component 4

xj

y

-1.0 -0.5 0.0 0.5 1.0

-6
-4

-2
0

2
4

6

Component 5

xj

y

Data
True component
Convex component
Concave component
Additive fit

YJ Choe Additive Models with Sparse Convexity Patterns



Introduction
MISOCP Formulation

Lasso Formulation
Demo

Convex Regression
Additive Convex Regression
Convexity Pattern Problem as a MISOCP
Mixed-Integer Convex Programming
The Backfitting Version
Results and Limitations

Section 2

MISOCP Formulation
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Convex Regression

Suppose we have a p-variate regression problem in which the true
function is assumed to be convex. This is:

minimize
1

n

n∑
i=1

(Yi −m(Xi ))2

s.t. m is convex.
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Convex Regression as a QP

It can be shown that this problem is, in fact, equivalent to the
following finite-dimensional quadratic program (QP):

minimize
f ,β

1

n

n∑
i=1

(Yi − fi )
2

s.t. fi ′ ≥ fi + βTi (Xi ′ − Xi )

i , i ′ = 1, . . . , n.

Here, f = (f1, . . . , fn)T is a vector of fitted values and β1, . . . , βn
are the subgradients at each point.
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minimize
f ,β

1

n

n∑
i=1

(Yi − fi )
2

s.t. fi ′ ≥ fi + βTi (Xi ′ − Xi )

i , i ′ = 1, . . . , n.

Why? The solution can be viewed as a piecewise-linear convex
function whose slopes are precisely the subgradient βi ’s:

m̂(x) = max
i=1,...,n

(
fi + βTi (x − Xi )

)
.

It is important to note that m̂ interpolates {(Xi , fi )}ni=1.

(For a proof, see [Boyd and Vandenberghe, 2009].)
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The Univariate Case

In the case where the true convex function is univariate, we can do
even better.

Note that this is the case with our model because each component
function is univariate.
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In the univariate case, sort the points. Then,

convexity ⇐⇒ subgradients are nondecreasing!

We only need n − 1 linear inequalities, instead of
(n

2

)
:

βi ≤ βi+1

for i = 1, . . . , n.
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Thus, the 1-D convex regression corresponds to the following QP:

minimize
f ,β

1

n

n∑
i=1

(Yi − fi )
2

s.t. fi+1 = fi + βi (Xi+1 − Xi )

βi ≤ βi+1

for i = 1, . . . , n − 1.

where the Xi ’s are sorted, i.e. Xi < Xi+1.
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Additive Convex Regression
Now, we assume an additive model whose components are convex.
Then, assuming

∑n
i=1 Yi = 0, we obtain the analogous QP:

minimize
f ,β

1

n

n∑
i=1

(Yi −
p∑

j=1

fij)
2

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j − X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

for i = 1, . . . , n − 1 and j = 1, . . . , p
n∑

i=1

fij = 0 for j = 1, . . . , p

where (i)j denotes the ith rank statistic with respect to the values
of the jth components of X1, . . . ,Xn.
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Identifiability Constraints

n∑
i=1

fij = 0 for j = 1, . . . , p.

These are often called identifiability constraints of additive models.

Given that the outputs Y1, . . . ,Yn are centered, it is necessary to
center the fitted values from each component, since otherwise we
can add and subtract the same amount to different components
and get the same solution.
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The Convexity Pattern Problem

Recall that our regression model is

Yi =

p∑
j=1

[fj(Xij) + gj(Xij)] + εi

for i = 1, . . . , n, where for each j = 1, . . . , p, fj is convex and gj is
concave such that at most one of fj and gj is nonzero.
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Good News

The convexity/concavity constraints as well as identifiability
constraints are analogous to those in additive convex regression.

For i = 1, . . . , n − 1 and j = 1, . . . , p:

f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j − X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j − X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

For j = 1, . . . , p:
n∑

i=1

fij = 0;
n∑

i=1

gij = 0.
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Not-So-Good News

“...such that at most one of fj and gj is nonzero.”
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Integer Variables

We introduce logical (0-1) variables to describe the constraint.
For j = 1, . . . , p and some constant B > 0,

‖fj‖2 =

√√√√ n∑
i=1

f 2
ij ≤ zjB

‖gj‖2 =

√√√√ n∑
i=1

g 2
ij ≤ wjB

zj + wj ≤ 1

zj ,wj ∈ {0, 1}.

where fj = (f1j , . . . , fnj)
T and gj = (g1j , . . . , gnj)

T . (cf. SpAM)
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Sparsity by Regularization

For each j = 1, . . . , p, zj + wj is 1 if the jth component is nonzero
and 0 if it is zero. But with the previous construction, zj + wj will
always tend to 1. Thus, we add a penalty term with some
regularization parameter λ > 0 to the objective:

1

n

n∑
i=1

(Yi −
p∑

j=1

(fij + gij))2 + λ

p∑
j=1

(zj + wj).

Note that the penalty term is exactly the number of nonzero
components. It essentially corresponds to a `0-regularization term,
which is not a convex problem.
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Towards a Convex Program: Replacing the Objective

We are almost there! One more trick will turn this program into a
0-1 mixed-integer second-order cone program (MISOCP).
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We replace

minimize
1

n

n∑
i=1

(Yi −
p∑

j=1

(fij + gij))2 + λ

p∑
j=1

(zj + wj)

by

minimize
t

n
+ λ

p∑
j=1

(zj + wj)

s.t.
n∑

i=1

(Yi −
p∑

j=1

(fij + gij))2 ≤ t

Now, the objective is linear and the inequality is a second-order
cone.
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The MISOCP Formulation

minimize
f ,g,β,γ,z,w,t

t

n
+ λ

p∑
j=1

(zj + wj )

s.t.
n∑

i=1

(Yi −
p∑

j=1

(fij + gij ))2 ≤ t

f(i+1)j ,j
= f(i)j ,j

+ β(i)j ,j
(X(i+1)j ,j

− X(i)j ,j
)

g(i+1)j ,j
= g(i)j ,j

+ γ(i)j ,j
(X(i+1)j ,j

− X(i)j ,j
)

β(i)j ,j
≤ β(i+1)j ,j

γ(i)j ,j
≥ γ(i+1)j ,j

for i = 1, . . . , n − 1 and j = 1, . . . , p

n∑
i=1

fij = 0;
n∑

i=1

gij = 0

∥∥fj∥∥2
≤ zjB;

∥∥gj∥∥2
≤ wjB

zj + wj ≤ 1

zj ,wj ∈ {0, 1}

for j = 1, . . . , p
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Mixed-Integer Convex Programming

A convex program in which some of the program variables are
integers.

Works from [Gomory, 1958], [Sherali and Adams, 1990],
[Lovász and Schrijver, 1991], [Balas et al., 1993], ....
Our focus is on 0-1 MISOCPs. Stubbs and Mehrotra (1999)
generalized the works in [Balas et al., 1993] on branch-and-cut for
general 0-1 mixed-integer convex programming. Drewes (2009)
analyzed the results in the case of second-order cone programming.
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Mixed-Integer Second-Order Cone Program (MISOCP)

The general form of a 0-1 mixed-integer second-order cone
program (MISOCP) can be stated as the following:

minimize
x∈Rl

cT x

s.t. Ax = b

‖Pix + qi‖2 ≤ rTi x + si ∀ i = 1, . . . ,m

xj ∈ {0, 1} ∀ j ∈ J ⊆ [l ]

where l is the total number of program variables and
[l ] = {1, . . . , l}.
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Relaxations

Since we have efficient solvers for convex programs, perhaps the
most natural way is to relax the integer variables and solve the
relaxed program for an approximate optimum. That is, we
replace the integer constraint xj ∈ {0, 1} with

xj ∈ [0, 1]

for j ∈ J. The relaxed problem is then convex.
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Branch-and-Bound

Let x∗ = (x∗1 , . . . , xl)
T be an optimal solution to the relaxed

problem. For any j ∈ J, if x∗j /∈ {0, 1}, which is not what we want,
we generate two subproblems, one with xj = 0 and the other with
xj = 1.
We can repeatedly “branch out” to get a binary tree with at most
2|J| leaves, corresponding to the 2|J| different configurations of the
integer variables.
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Cuts

We want the tree search to be more efficient by pruning the tree!

If x∗ is a non-integral solution to some relaxation, then we try to
find a linear hyperplane that separates x∗ from all of the feasible
integer points. Such hyperplane is called a cut.

A cut need not exist in every case; we need a systematic
framework in which we can generate cuts.
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Example: A Cut

[Ceria]
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Branch-and-Cut

Combines the branch-and-bound algorithm with additional pruning
by cuts!
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Algorithm 2 Branch-and-Cut (with Most Infeasible Branching)

Initialize x∗ ← NULL; OPT ←∞; P ← {The MISOCP problem}
while P not empty do

Remove a problem P from P
if relaxation of P is infeasible then

Continue to next iteration of the loop
end if
Solve the relaxed version of P and obtain (xP , tP )

if xP ∈ {0, 1}|J| and tP < OPT then
x∗ ← xP ; OPT ← tP

else if tP < OPT then
if there is a cut for xP then

Add the cut to P and insert P to P
Continue to the next iteration of the loop

else
Find j = argminj∈J

∣∣(xP )j − 0.5
∣∣ # Most Infeasible Branching

Define P0 ← (P with xj = 0); P1 ← (P with xj = 1)
Add P0 and P1 to P

end if
end if

end while
return x∗ and OPT
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Example: Branch-and-Cut with MILP [Mitchell, 2002]

minimize
x1,x2

− 6x1 − 5x2

s.t. 3x1 + x2 ≤ 11

− x1 + 2x2 ≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z

YJ Choe Additive Models with Sparse Convexity Patterns



Introduction
MISOCP Formulation

Lasso Formulation
Demo

Convex Regression
Additive Convex Regression
Convexity Pattern Problem as a MISOCP
Mixed-Integer Convex Programming
The Backfitting Version
Results and Limitations

[Mitchell, 2002]
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[Mitchell, 2002]
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Lift-and-Project Cuts

As with other mixed-integer convex programs, for MISOCPs there
is a lift-and-project construction of a hierarchy of sets that allows
one to generate cuts [Drewes, 2009].
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The Backfitting Version

Algorithm 3 The Convexity Pattern Backfitting Algorithm

Given {(Xi ,Yi )}ni=1 ⊆ Rp × R, where
∑n

i=1 Yi = 0

Initialize f̂j ≡ 0 for each j = 1, . . . , p
repeat

for j = 1, . . . , p (or in random order) do
Ri = Yi −

∑
k 6=j f̂k(Xik) for i = 1, . . . , n

f̂j = convexity .pattern.1d({(Xij ,Ri )}ni=1) # Output is centered
end for

until change in fitted values is small
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Example: Full MISOCP
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Example: MISOCP Backfitting Version
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Example: MISOCP Backfitting Version
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Limitations of the MISOCP Formulation

It’s still an NP-hard problem, and it does not scale.

The full MISOCP: for just n = 500 and p = 8, there are
∼ 20, 000 constraints. In practice (using Rmosek), this
amounts to ∼ 2, 000 branches with ∼ 200 cuts. On a laptop,
it takes around 5 minutes.

The backfitting version: for p = 20 or larger, it rarely
converges. Also, difficult to analyze theoretically.

Close/identical points: βi =
fi+1 − fi

Xi+1 − Xi
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Section 3

Lasso Formulation
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The Lasso
1

n
‖Y − Xβ‖2

2 + λ ‖β‖1

[Hastie et al., 2009]
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[Hastie et al., 2009]
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The Isotonic Pattern Problem

Also known as: the monotonicity pattern problem.
In the 1-D, assuming sorted data,

minimize
f ,g

1

n

n∑
i=1

(Yi − (fi + gi ))2 + λ{penalty}

s.t. fi ≤ fi+1

gi ≥ gi+1

for i = 1, . . . , n − 1
n∑

i=1

fi = 0;
n∑

i=1

gi = 0

at most one of f and g is nonzero.
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The Lasso Penalty for the 1-D Isotonic Pattern Problem

Define ∆fi = fi+1 − fi and ∆gi = gi+1 − gi for i = 1, . . . , n − 1.
Because the points are centered, we can recover the points exactly
from just knowing the differences.
Define the penalty as

penalty =

∥∥∥∥[∆f
∆g

]∥∥∥∥
1

= ‖∆f ‖1 + ‖∆g‖1

=
n−1∑
i=1

(fi+1 − fi ) +
n∑

i=1

(gi − gi+1)

= (fn − f1) + (g1 − gn).
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The Magic

minimize
f ,g

1

n

n∑
i=1

(Yi − (fi + gi ))2 + λ{(fn − f1) + (g1 − gn)}

s.t. fi ≤ fi+1

gi ≥ gi+1

for i = 1, . . . , n − 1
n∑

i=1

fi = 0;
n∑

i=1

gi = 0

Claim: With this penalty, only the right pattern will emerge!
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Example: The Isotonic Pattern Problem
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(Code by Sabyasachi Chatterjee)
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The p-Dimensional Isotonic Pattern Problem

minimize
f ,g

1

n

n∑
i=1

(Yi −
p∑

j=1

(fij + gij))2

+ λ

p∑
j=1

{(f(n)j ,j − f(1)j ,j) + (g(1)j ,j − g(n)j ,j)}

s.t. f(i)j ,j ≤ f(i+1)j ,j

g(i)j ,j ≥ g(i+1)j ,j

for i = 1, . . . , n − 1 and j = 1, . . . , p
n∑

i=1

fij = 0;
n∑

i=1

gij = 0

for j = 1, . . . , p.
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Convexity Pattern Problem with `1-Regularization

Is there an analogous lasso formulation for convexity?

...almost.
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A Second Look at the Convexity Pattern Problem

minimize
f ,g ,β,γ

1

n

n∑
i=1

(Yi −
p∑

j=1

(fij + gij))2 + λ{penalty}

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j − X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j − X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n − 1 and j = 1, . . . , p

. . .

Where can we induce sparsity?
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The subgradients are monotone!
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The Convexity Pattern Problem with `1-Regularization

minimize
f ,g ,β,γ

1

n

n∑
i=1

(Yi −
p∑

j=1

(fij + gij))2

+ λ

p∑
j=1

{(β(n)j ,j − β(1)j ,j) + (γ(1)j ,j − γ(n)j ,j)}

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j − X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j − X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n − 1 and j = 1, . . . , p
n∑

i=1

fij = 0;
n∑

i=1

gij = 0 for j = 1, . . . , p.
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The 1-D Version

minimize
f ,g

1

n

n∑
i=1

(Yi − (fi + gi ))2 + λ{(βn − β1) + (γ1 − γn)}

s.t. fi+1 = fi + βi (Xi+1 − Xi )

gi+1 = gi + γi (Xi+1 − Xi )

βi ≤ βi+1

γi ≥ γi+1

for i = 1, . . . , n − 1
n∑

i=1

fi = 0;
n∑

i=1

gi = 0
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Is it exactly the same?

One issue: the fitted values are centered, but the subgradients are
not.

But it seems to work exactly as it should.
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Lasso Example: 3 Components
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Lasso Example: 8 Components

-1.0 0.0 0.5 1.0

-5
0

5

Component 1

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 2

xj

y

-1.0 0.0 0.5 1.0

-5
0

5
Component 3

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 4

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 5

xj
y

-1.0 0.0 0.5 1.0

-5
0

5

Component 6

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 7

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 8

xj

y

Data
True component
Convex component
Concave component
Additive fit

YJ Choe Additive Models with Sparse Convexity Patterns



Introduction
MISOCP Formulation

Lasso Formulation
Demo

`1-Regularization
Isotonic Pattern Problem
Convexity Pattern Problem with `1-Regularization

`1-Regularization Example: λ = 0.01
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`1-Regularization Example: λ = 0.02
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`1-Regularization Example: λ = 0.1
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`1-Regularization Example: λ = 1.0
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Isotonic Pattern Problem
Convexity Pattern Problem with `1-Regularization

Limitations

Quality of fit: We may need to re-fit in 1-D (or backfitting)
once we have the pattern.

Global penalty: Less freedom on choice of smoothness for
each component.

Close/identical points: βi =
fi+1 − fi

Xi+1 − Xi
.
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Section 4

Demo
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Logistic Regression: Generalized Additive Models
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(Data: pima from [Faraway, 2014] in R package faraway)
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Logistic Regression: Convexity Pattern (Full MISOCP)
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Logistic Regression: Convexity Pattern (Backfitting)
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Logistic Regression: Convexity Pattern (Lasso)
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Sparsity Pattern Recovery: Parametric Lasso

[Wainwright, 2009]
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Convexity Pattern Recovery: Full MISOCP
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Convexity Pattern Recovery: MISOCP with Backfitting
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Example: Diabetes Data on Pima Indians
Simulation: Pattern Recovery

Convexity Pattern Recovery: Lasso
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Thank You!
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