
A Statistical Analysis of Neural Networks

Yo Joong “YJ” Choe
Carnegie Mellon University

yjchoe@cmu.edu

1 Introduction

While neural networks gained huge empirical success in the recent years [1], the statistical theory
behind their success remains to be seen. This project attempts to review some of the previous and
current work that may give insights into analyzing neural networks from a statistical point of view.
In particular, we review two sets of papers that analyze neural networks using generalization error
bounds and minimax theory.

First, we follow an analysis of error bounds [2] and minimax rates [3] for feedforward sigmoidal
neural networks with a single hidden layer. This leads to a minimax rate that appears to break the
statistical curse of dimensionality by only requiring quadratically many data points to achieve the
same error rate. The result should be viewed with caution, however, because the set of all neural
networks considered in the analysis implicitly shrinks as dimension increases.

Next, we give a more recent analysis of generalization bounds [4] for convex neural networks [5]
using nonnegative homogeneous activation functions such as the rectified linear unit (ReLU) [6].
Assuming a low-dimensional nonlinear structure, Bach shows that the mean generalization error
(or excess risk) can be bounded by a rate that also appears to break the statistical curse and further
demonstrates adaptivity to the low-dimensional subspace.

While a rigorous statistical analysis of neural networks containing multiple hidden layers is still
largely an open problem, we hope that analyses of “shallow” neural networks can still provide insights
to understanding the statistical properties of neural networks.

2 Notation and Assumptions

2.1 Problem Setup

Throughout the paper, we consider a regression problem given n data points
(X1, Y1), . . . , (Xn, Yn) ∈ X × Y ⊆ Rd × R. We further assume that the data comes from
the model Yi = f(Xi) + εi, where f is the true regression function from a function class F and
the errors εi have zero mean and are independent from the inputs Xi. For Theorem 3.3, we further
assume that Xi are independent and identically distributed to some distribution P .

Unless specified otherwise (e.g. proof of Theorem 3.3), we also assume that both the input and output
spaces are bounded: there exist r, r′ > 0 such that ∥x∥2 ≤ r and |y| ≤ r′ for all x ∈ X and y ∈ Y .
In such cases, we let X = Br = {x ∈ Rd : ∥x∥2 ≤ r} for simplicity.

2.2 Neural Networks

In all of our results, we will consider the set of all (feedforward) neural networks with one hidden
layer and an activation function. That is, we consider the set of all real-valued functions on Rd that
have the form

f(x) = η0 +

k∑
j=1

ηjσ(w
T
j x+ bj) ∀ x ∈ Rd (1)

Technical Report (2016).

for any k ∈ N, where η = (η0, η1, . . . , ηk) ∈ Rk+1 and (wj , bj) ∈ Rd × R for each j = 1, . . . , k.
We call σ : R → [0,∞) an activation function and the function x 7→ σ(wT

j x+ bj) as the jth neuron
or unit.

We say that an activation function σ is sigmoidal or squashing if it is a nondecreasing, bounded,
and continuous function on R such that limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1. The sigmoidal
activation function can be viewed as a continuous surrogate for the discontinuous step function
σ∗ : R → {0, 1} defined by σ∗(t) := I(t ≥ 0), where I is the indicator function. A neural network
of the form (1) with a sigmoidal activation function is called a sigmoidal neural network.

Alternatively, we say that an activation function σ is homogeneous of order α ∈ {0, 1, . . . } if
σ(t) = (t)

α
+ = max{t, 0}α. Note that, if α = 0, we get the step function σ∗. If α = 1, we also call

the function as the rectified linear unit (ReLU) or the rectifier. For α ≥ 1, an homogeneous activation
function σ is not sigmoidal because limt→∞ σ(t) = ∞. Rather, we have that limt→∞ σ(t)/tα = 1
for the homogeneous activation function of order α.

Finally, we define a set of target functions in terms of the absolute mean of Fourier transformations.
Specifically, for any C > 0, define ΓC = {f : Rd → R |

∫
Rd |ω| |f̃(ω)|dω ≤ C}, where f̃ denotes

the Fourier transform of f .

2.3 Convex Neural Networks

Convex neural networks [5] provide an interesting theoretical approach to analyzing single-hidden-
layer neural networks. By letting the number of neurons k → ∞ in (1), we can obtain functions of
the form

f(x) =

∫
V
σ(wTx+ b)η(w, b)dτ(w, b) =

∫
V
φv(x)η(v)dτ(v) (2)

where η : V → R is now a function of the weight and bias vector v = (w, b), over which some
measure τ is defined. We assume that V = Bl = {v = (w, b) ∈ Rd × R : ∥v∥1 = ∥(w, b)∥1 ≤ l}
for some l > 0, and for each v = (w, b) ∈ V ⊆ Rd × R, we will denote a neuron by φv : x 7→
σ(wTx+b) = σ(vT z), where z = (x, 1). We recover (1) by letting ηdτ = η0+

∑k
j=1 ηjDirac(wj ,bj)

in (2), where Dirac is the Dirac delta function.

With convex neural networks, we will restrict ourselves to the case when σ is a homogeneous
activation function such as the rectified linear unit.

2.4 Function Norms and Spaces

For any function f defined on the bounded domain X = Br ⊆ Rd and an arbitrary probability
measure P defined on Br, we define the (squared) functional L2 norm as

∥f∥22 =

∫
X
f2dP =

∫
X
f2(x)dP (x)

The closure of set of all functions that have finite functional L2 norm defines the Hilbert space L2(X).

We also define norms that give constraints on the function space we consider. For a neural network
f of the form (1), we define the L1 variation norm as γ1(f) = ∥η∥1 and the L2 RKHS norm as
γ2(f) = ∥η∥2. For p = 1, 2, we let N δ

p be the closure (in the functional L2 norm) of the set of all
neural networks f of the form (1) such that γp(f) ≤ δ. We will use Np to denote the analogous set
with the constraint that γp(f) < ∞.

More generally, we can extend this definition to convex neural networks. For a convex neural network
of the form (2), define

γp(f) =

(∫
V
|η(w, b)|p dτ(w, b)

) 1
p

and the definitions of N δ
p and Np can be extended analogously (we will denote these convex analogues

as Fδ
p and Fp respectively). One can show that this is a well-defined norm on Fp, provided that V is

a compact topological space. Note that this definition of the norm is equivalent to what we defined in
the previous paragraph.

2

Since convex neural networks are generalizations of neural networks, we get N δ
p ⊆ Fδ

p for each
δ ∈ (0,∞]. Also, one can prove using Jensen’s inequality that γ1(f) ≤ γ2(f) for each (convex)
neural network f , which in turn implies that N δ

2 ⊆ N δ
1 and Fδ

2 ⊆ Fδ
1 for each δ ∈ (0,∞].

Finally, since the form (2) depends on the choice of the activation function σ, which we assume to be
homogeneous of order α (i.e. σ(t) = (t)

α
+), both γp and Fδ

p depends on the parameter α.

2.5 Loss, Risk, and Errors

The squared loss of an estimator f̂ at data point (x, y) is defined as ℓ(y, f̂(x)) = (y − f̂(x))2,
and the (prediction) risk of f̂ using any loss function ℓ (e.g. the squared loss) is the expected loss
E[ℓ(Y, f̂(X))], where the expectation is taken over the joint distribution of X and Y . The empirical
risk of an estimator f̂ given n data points is defined as R̂(f̂) = 1

n

∑n
i=1 ℓ(Yi, f̂(Xi)).

In general, consider a function class F and an estimator f̂n,δ that minimizes the empirical risk, up
to some optimization error εopt, within a sub-function class Fδ ⊆ F that is characterized by some
δ > 0. We define the generalization error or excess risk as R(f̂n,δ)− inff∈F R(f).

Assuming a G-Lipschitz-continuous continuous loss ℓ, such as the squared loss on a bounded domain
X = Br, and a sub-function class Fδ ⊆ F with f̂δ = arginff∈Fδ R(f), we will use the following
decomposition of the generalization error [7]:

R(f̂n,δ)− inf
f∈F

R(f) ≤ G sup
x∈X

|f̂δ(x)− f(x)|+ 2 sup
f∈Fδ

|R̂(f)−R(f)|+ εopt (3)

where the first two terms are respectively called as the approximation error and the estimation error.

2.6 Minimax Theory

The minimax risk of a function class F is defined as

Rn = Rn(F) = inf
f̂n

sup
f∈F

E
[
∥f̂n − f∥22

]
where the infimum is over all estimators using n data points and the expectation is taken over the
randomness of f̂n assuming that the true function is f .

For each ε > 0, an ε-packing set Nε ⊆ F is a finite set such that for any f, g ∈ Nε and f ̸= g
we have ∥f − g∥2 > ε. The (L2) metric entropy of F , denoted as M(ε), is the logarithm of the
maximum cardinality of all ε-packing sets for F .

3 Key Results

3.1 Minimax Rate of Convergence for Neural Networks

We first present the universal approximation property of single-hidden-layer neural networks.

Theorem 3.1 (Universal Approximation; [8, 9]) Sigmoidal neural networks are universal approxi-
mators for any Borel-measurable real-valued function on a compact subset K ⊆ Rd. That is, given
any Borel-measurable function f : Rd → R and any ε > 0, there exists a neural network f̂ of the
form (1), where σ is sigmoidal, such that

sup
x∈K

|f̂(x)− f(x)| ≤ ε.

The number of neurons in f̂ can depend on both f and ε.

This version of the universal approximation can be found in Theorem 2.2 of Hornik et al. [8] for
any continuous nonconstant activation function (e.g., sigmoidal and rectifier activations). Cybenko
(Theorem 2, [9]) and Hornik et al. (Theorem 2.1, [8]) concurrently proved analogous results for
approximating any continuous real-valued function on a compact domain.

3

Given that single-hidden-layer neural networks are universal approximators, one can claim that it is
reasonable to assume the true regression function is a single-hidden-layer neural network. In this
sense, we are further interested in evaluating its statistical performance as a function class using
minimax theory. But as a first step, in [2], Barron presents an upper bound on the squared L2 risk
using a choice of function class that allows for arguments using Fourier analysis.

Theorem 3.2 ([2] Theorem 3, Generalization Error Bound) Suppose that the true regression
function f has a Fourier transform with a bounded absolute mean1, that is, f ∈ ΓC .

Let f̂n = arginff∈N δ
1

1
n

∑n
i=1 (Yi − f(Xi))

2 be a neural network that minimizes the mean squared
error subject to the constraint that γ1(f) ≤ δ. Let k be the number of neurons in the hidden layer of
f̂n. Then,

E
[
∥f̂n − f∥22

]
≤ O

(
1

k

)
+O

(
kd log n

n

)
where the expectation is taken over the data and the two terms on the right hand side are approxima-
tion and estimation errors, respectively.

By choosing k = O
(

d logn
n

)−1/2

, we obtain the following upper bound:

E
[
∥f̂n − f∥22

]
≤ O

(
d log n

n

)1/2

(4)

Finally, we present the near-minimax rate of convergence in squared L2 risk for the set of single-
hidden-layer neural networks.

Theorem 3.3 ([3] Section 7.8, Minimax Rate of Convergence) Consider N δ
1 , the set of all single-

hidden-layer neural networks with a sigmoidal activation function and output weights that are
bounded by δ in the L1 variation norm. Then,(

(log n)
1+1/d

n

) 1+1/d
2+1/d

⪯ inf
f̂n

sup
f∈N δ

1

E
[
∥f̂n − f∥22

]
⪯
(
log n

n

) 1+1/d
2+1/d

That is, up to a logarithmic factor, we obtain the following minimax rate of convergence:

inf
f̂n

sup
f∈N δ

1

E
[
∥f̂n − f∥22

]
≍
(
log n

n

) 1+1/d
2+1/d

(5)

Even for a moderately large d, the rate is approximately n−1/2.

As a reference, the minimax rate for nonparametric estimation using the set of all Lipschitz-continuous
functions is n−2/(2+d), which implies that as d increases one requires exponentially more data points
to achieve the same error rate. This phenomenon is often called the (statistical) curse of dimensionality.
The rate in (5) appears to suggest that single-hidden-layer neural networks do not suffer from the
curse of dimensionality; however, since the output weights η are bounded by a fixed constant, we see
that the set of neural networks we consider is implicitly shrinking as d → ∞.

3.2 Generalization Bounds for Convex Neural Networks

In this section, we present results from [4] based on a theoretical approach using convex neural
networks. We assume that the activation function is homogeneous of order α, i.e. σ(x) = (x)

α
+. Note

that we no longer have a minimax result but only an upper bound on the (mean) generalization error,
which can be decomposed into approximation, estimation, and optimization errors as in (3).

We first show that any convex neural network of the form (2) can be approximated arbitrarily closely
with a neural network of the form (1) containing finitely many neurons. While the result was first
presented by Barron in [10] and is used to prove Theorem 3.2, Bach in [4] provides a constructive
proof using a convex optimization procedure with conditional gradients.

1This function class includes linear functions, sigmoidal functions, functions with derivatives of order at least
⌊d/2⌋+ 2, absolutely convergent Fourier series, and more. See Section IX in [10] for examples of functions
that belong to this class.

4

Proposition 3.4 ([10, 4], Conditional Gradient Algorithm for Convex Neural Networks) For
any f ∈ F1, there exists a neural network f̂ ∈ N δ

1 that has the form (1), with k = O(γ1(f)
2ε−2),

and satisfies ∥f̂ − f∥22 ≤ ε2.

Assuming that the loss function is convex and smooth, there exists an iterative algorithm that searches
the space Fδ

1 and converges to a solution f̂ at rate O(1/t), where t is the number of iterations. The
solution is a convex combination of t single neurons of the form x → ±δσ(wTx + b) for some
(w, b) ∈ V , and in particular f̂ ∈ N δ

1 .

Proposition 3.4 allows us to only consider neural networks in N δ
1 with finitely many neurons, even

though the theoretical results hold for convex neural networks in Fδ
1 more generally. It also allows

us to assume that the optimization error can be made arbitrarily close to zero, and for the rest of the
analysis we assume that the generalization error can be bounded by the sum of approximation and
estimation errors.2

We now give a bound on the approximation error.

Proposition 3.5 ([4] Proposition 6, Approximation Error Bound) Let f be any L-Lipschitz-
continuous function and let δ ≥ C(d, α) where C(d, α) is some constant that only depends on
d and α. Then, there exists a neural network f̂δ ∈ Fδ

2 ⊆ Fδ
1 such that

sup
x∈X

|f̂δ(x)− f(x)| ≤ C(d, α)

(
δ

L

)−1/(α+(d−1)/2)

log

(
δ

L

)
(6)

This bound gives an interesting corollary in the case where the number of neurons is fixed.

Corollary 3.6 ([4] Section 4.7, Approximation Error Bounds using Finitely Many Neurons)
Let α = 1 and k be the number of neurons. Then, any f be any L-Lipschitz-continuous function can
be approximated by a neural network f̂ ∈ N δ

1 with k neurons with a uniform error

Lk−1/d log k

where δ = Ln
d+1
2d .

Bach notes that the approximation error of O(k−1/d) for rectified linear units with finite number
of neurons was previously known in the literature as the best bound under the L2 loss and various
activation functions [11, 12, 13].

Next, we give a uniform bound on the (mean) estimation error.

Proposition 3.7 ([4] Proposition 7, Estimation Error Bound) Let R be a risk function defined us-
ing a loss function ℓ that is G-Lipschitz-continuous in its second argument. Then, for α ≥ 1 and for
any δ > 0,

E

[
sup
f∈N δ

1

|R̂(f)−R(f)|

]
≤ 4C(d, α)

Gδ√
n

(7)

where C(d, α) = α
√
2 log (d+ 1).

Now we present the main result, which provides a set of bounds on the mean generalization error
using Propositions 3.5 and 3.7.

Theorem 3.8 ([4] Section 5, Generalization Error Bounds) Suppose that the true regression func-
tion has the form

f(x) =

k∑
j=1

fj(w
T
j x) (8)

2The result assumes that the true risk function is known. In [4], Bach notes that there is a “representer
theorem” for the finite sample case that allows the loss function to only depend on the n data points, in which
case at most n neurons are used. He also notes that this is very different from the usual RKHS representer
theorem, however, because the n neurons are not known in advance.

5

where wj ∈ V = Bl and fj is bounded as well as 1-Lipschitz-continuous for each j = 1, . . . , k. Let
Fk be the set of all such functions.3

Suppose that the weight matrix W = [w1, . . . , wk] ∈ Rd×k has at most s ≪ d nonzero elements. In
particular, assume that ∥wj∥1 ≤

√
sl. Then, for α ≥ 1,

E
[
R(f̂n,δ)− inf

f∈Fk

R(f)

]
≤ O

(
ks1/2 (log d)

1/(α+1)

n1/(2α+2)
log n

)
(9)

where f̂n,δ = arginff∈Fδ
1
R̂(f) with δ =

(
n

log d

)α/(2α+2)

and the expectation is taken over the

randomness of the data (X1, Y1), . . . , (Xn, Yn).

Using the squared loss function and assuming α = 1, in which case the estimation is done using
rectified linear units, we obtain

E
[
∥f̂n,δ − f∥22

]
≤ O

(
k (s log d)

1/2

n1/4
log n

)
(10)

There are several remarks to be made about Theorem 3.8.

1. The exponent of n is independent of d assuming the form (8). When there is only a
Lipschitz-continuity assumption on f , the rate becomes

O

(
C(d)s1/2

n1/(d+3)
log n

)
where C(d) is some constant that only depends on d.
This does not necessarily imply, however, that the assumption is too strict. It includes all
single-hidden-layer neural networks with at most k neurons, which we showed are universal
approximators (Theorem 3.1) with seemingly appealing minimax rates (Theorem 3.3) as
k → ∞. Of course, as k → ∞ the risk bound (9) becomes meaningless – see next item for
a better way to understand the bound in a way similar to Theorems 3.2 and 3.3.

2. A regression model of the form (8) is used in projection pursuit regression. The scaling by k
is due to the fact that we approximate each fj and add up the k error terms. We can remove
k in the error bound by assuming a more specific form f(x) =

∑k
j=1 ηjfj(w

T
j x) such that

∥η∥1 ≤ c for some constant c > 0, and this will give a bound more similar to Theorem
3.2. But it should also be noted that a fixed constant on the output weights implies that the
function space becomes relatively smaller as k → ∞ or as d → ∞.

3. The assumption that the weight matrix W is s-sparse by an L1-penalty is crucial. The
assumption suggests that there is a low-dimensional subspace that can be selected using
convex neural networks. In [4], Bach claims that this means the set of convex neural networks
with an L1-penalty on the weights are capable of doing high-dimensional nonlinear variable
selection. The rate of convergence seems to resemble that of the lasso [14], which is a linear
variable selection method that gives the rate O

(
s log d

n

)
.

Without the sparsity assumption, the mean generalization bound is only

O

(
kd1/2

n1/(2α+2)
log n

)
which gives a slower rate of convergence than in Theorem 3.2.

4. Other than the sparsity and boundedness assumptions, there is no other assumption made
– in particular, the result still holds with correlated inputs [4]. This is different from the
assumptions made in Theorem 3.3.

5. It appears that the use of rectifiers (α = 1) gives the slower rate n−1/4, compared to
Theorems 3.2 and 3.3, which give the rate n−1/2. However, the use of rectifiers allow for a
theoretical connection to RKHS theory [4] that leads to Theorem 3.8.

3Note that this set includes single-hidden-layer neural networks of the form (1) having k neurons, by using
an augmented input x← (x, 1).

6

6. The bound (10) using α = 1 is gives the best rate among all choices of α ≥ 1 in (9).
Intuitively, the role of α in the analysis is similar to that of the smoothness parameter in
Sobolev or Besov spaces for nonparametric regression.

7. The loss function can be any Lipschitz-continuous function, such as the hinge loss, the
logistic loss, and the squared loss on a bounded domain.

4 Proof Outline

4.1 Minimax Rate of Convergence for Neural Networks

We will skip the proof of the rather classical result in Theorem 3.1. We give a proof outline of
Theorem 3.3, which can be viewed as a minimax version of Theorem 3.2.

We start with a general result in minimax theory involving metric entropy. Recall our regression setting
Yi = f(Xi) + εi, i = 1, . . . , n, where f is the regression function. Suppose that Xi

iid∼ P for some
fixed distribution P and the errors εi

iid∼ Normal(0, σ2) are independent of the Xi’s. Note that the
definition of the squared loss of an estimator f̂n to f involves P : ∥f̂n−f∥22 =

∫
X (f̂n(x)−f(x))2dP .

Theorem 4.1 ([3] Theorem 6, Le Cam Equation for Nonparametric Regression) Let F be the
set of regression functions such that

(i) lim infε→0 M(aε)/M(ε) > 1 for some a ∈ (0, 1).

(ii) supf∈F ∥f∥∞ < ∞.

Then, the solution εn to the Le Cam equation
M(εn) = nε2n (11)

satisfies
inf
f̂n

sup
f∈F

E
[
∥f̂n − f∥22

]
≍ ε2n

Therefore, we can obtain the minimax rate of convergence by solving for εn in the Le Cam equation
(11). We note that the standard statement of this result actually involves estimating from a class of
density functions, which is further assumed to be convex and bounded away from zero. Theorem 4.1
is an extension of the standard version to regression using the Hellinger distance.

Next, we compute the metric entropy of the set of single-hidden-layer neural networks with a
sigmoidal activation function.

Lemma 4.2 ([15] Proof of Theorem 4, Metric Entropy of the Sigmoidal Neural Network Class)
For each δ > 0, the metric entropy of N δ

1 with a sigmoidal activation function is given by

ε−
1

1/2+1/d ⪯ M(ε) ⪯ ε−
1

1/2+1/2d log(1/ε) (12)

Now we give a proof sketch of Theorem 3.3 using Theorem 4.1 and Lemma 4.2.

Proof of Theorem 3.3 [3]: We will apply to Theorem 4.1 the bounds we get from Lemma 4.2. First,
from Lemma 4.2, we can show that N δ

1 satisfies condition (i). Intuitively, up to a logarithmic factor,
we get

M(aε)

M(ε)
≍ a−

1
1/2+1/d > 1

for any a ∈ (0, 1). Condition (ii) is also satisfied because, for every f ∈ N δ
1 of the form (1), we

assume that γ1(f) = ∥c∥1 ≤ δ and that σ is bounded.

Then, applying the upper and lower bounds from (12) to (11) and solving for εn, we get(
(log n)

1+1/d

n

) 1+1/d
2+1/d

⪯ inf
f̂n

sup
f∈N δ

1

E
[
∥f̂n − f∥22

]
≍ ε2n ⪯

(
log n

n

) 1+1/d
2+1/d

7

Note that, while Theorem 3.3 is a more general result in the minimax sense, it also makes the
assumption that the model errors are i.i.d. Normal. This is different from the assumption from
Theorem 3.2 that the error is instead independent and bounded.

4.2 Generalization Bounds for Convex Neural Networks

Due to the amount of results presented, we will only give proof outlines to select proposi-
tions/theorems. All proofs can be found in [4] and its references.

A constructive proof of Proposition 3.4 is given in [4] via a conditional gradient algorithm that
employs the Frank-Wolfe algorithm to add a new neuron of the form x → ±δσ(wTx + b) into a
convex combination.

The proof of Proposition 3.5 makes use of Fourier transforms and spherical harmonics to get the
result when the domain is Sd−1 and then extends to Rd by noting that the functions in N δ

2 are (L/r)-
Lipschitz-continuous. Proposition 3.7 is a standard result [16] that can be proved using Radamacher
complexities.

Propositions 3.5 and 3.7 can give generalization bounds for convex neural networks under various
settings which can be found in [4]. Here we presented one of the settings.

Proof of Theorem 3.8 [4]: First, we more specifically assume that fj is bounded by lr
√
s and

is 1-Lipschitz-continuous. (Recall that we assumed earlier X = {x ∈ Rd : ∥x∥2 ≤ r} and
V = {v = (w, b) ∈ Rd × R : ∥v∥1 ≤ l}.) Then, by Proposition 3.5, we can approximate each fj by
f̂j ∈ Fδ′

1 , where δ′ = δlr
√
s. This gives the error C(α)lr

√
sδ−1/α log δ. For k functions, we get a

total approximation error of kC(α)lr
√
sδ−1/α log δ, now assuming δ′ = kδlr

√
s.

By Proposition 3.7 with α ≥ 1, we obtain the mean estimation error of kGlrδ
√
s log d

n . (Recall that

we assume the loss function is G-Lipschitz-continuous.) By choosing δ =
(

n
log d

)α/(2α+2)

, we can
balance the two error terms and obtain the desired bound on the mean generalization error.

5 Conclusion and Discussion

We presented two sets of statistical analyses that attempts to explain whether single-hidden-layer
neural networks can break the statistical curse of dimensionality.

The first set of analyses shows that neural networks with single hidden layers and a sigmoidal
activation function are universal approximators with a minimax rate of convergence that scales
roughly by n−1/2. This seems to imply that single-hidden-layer neural networks do not require
exponentially larger sample sizes to achieve the same error, although at the same time the function
space is implicitly decreasing as d → ∞.

The second set of analyses employs the framework of convex neural networks and uses the rectified
linear unit (ReLU) and L1-penalty on input weights (in addition to output weights) to show that
the mean generalization error with any Lipschitz-continuous loss function is bounded roughly by
(s log d)1/2

n1/4 , assuming there is an underlying nonlinear low-dimensional structure. This rate suggests
that single-hidden-layer neural networks with ReLU and L1-penalty may be capable of doing
nonlinear variable selection in a high-dimensional setting.

These results may provide some insights into why neural networks seem to be useful in finding
meaningful representations in high-dimensional settings, while a more rigorous analysis of neural
networks in high-dimensional settings remains to be seen. In particular, none of these results are
believed to be applicable to deep neural networks [4], which are the ones that earned deep learning
huge successes in vision, speech, and many other application domains.

8

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

[2] Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
Learning, 14(1):115–133, 1994.

[3] Yuhong Yang and Andrew Barron. Information-theoretic determination of minimax rates of
convergence. Annals of Statistics, pages 1564–1599, 1999.

[4] Francis Bach. Breaking the Curse of Dimensionality with Convex Neural Networks. Research
report, INRIA Paris, December 2014.

[5] Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Advances in neural information processing systems, pages 123–130,
2005.

[6] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
807–814, 2010.

[7] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

[8] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[9] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[10] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
Information Theory, IEEE Transactions on, 39(3):930–945, 1993.

[11] Pencho P Petrushev. Approximation by ridge functions and neural networks. SIAM Journal on
Mathematical Analysis, 30(1):155–189, 1998.

[12] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica,
8:143–195, 1999.

[13] Ronald A DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approximation.
Manuscripta mathematica, 63(4):469–478, 1989.

[14] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[15] Y Makovoz. Random approximants and neural networks. Journal of Approximation Theory,
85(1):98–109, 1996.

[16] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. The Journal of Machine Learning Research, 3:463–482, 2003.

9

	Introduction
	Notation and Assumptions
	Problem Setup
	Neural Networks
	Convex Neural Networks
	Function Norms and Spaces
	Loss, Risk, and Errors
	Minimax Theory

	Key Results
	Minimax Rate of Convergence for Neural Networks
	Generalization Bounds for Convex Neural Networks

	Proof Outline
	Minimax Rate of Convergence for Neural Networks
	Generalization Bounds for Convex Neural Networks

	Conclusion and Discussion

