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Abstract

In nonparametric statistics, additive modeling is an efficient and interpretable tech-
nique for multivariate models, even when the true model is not additive. Shape
constraints, such as requiring functions to be convex or monotone, also allow
tractable methods that apply to numerous examples.
Here, we propose a novel estimation technique that combines additive models with
shape constraints. Specifically, we consider a regression model in which the true
function is additive and each component is either convex, concave, or identically
zero. This model extends the idea of sparse additive models (SpAM) proposed in
[17].
We first show that the problem can be expressed as a 0-1 mixed-integer second-
order cone program (MISOCP), for which there exist solvers based on heuristics.
Then, we describe our recently discovered quadratic program (QP) formulation
which extends the idea of Lasso [20]. We present examples as well as simulations
comparing the different formulations.

∗This work is done as part of the Chicago Center for the Theory of Computing and Allied Areas (“Theory
Center”) Summer 2014 Research Education for Undergraduates (REU) Program, which is jointly run by the
University of Chicago and Toyota Technical Institute at Chicago. This paper contains both original research and
reviews of established ideas studied during the program duration. The research is a joint work with Sabyasachi
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Notations and Assumptions

Throughout this paper, we work in a regression setting with sample data. That is, we assume that
we have (X1, Y1), . . . , (Xn, Yn) ∈ Rp × R, where Xi = (Xi1, . . . , Xip)

T for each i = 1, . . . , n,

which comes from a true regression function m : Rp → R with a Gaussian noise εi
IID∼ N (0, σ2)

according to the following model:
Yi = m(Xi) + εi

for i = 1, . . . , n.

We say that the model is additive if the true functionm is a sum of univariate component functions
f1, . . . , fp : R→ R in respective components:

m(x) =

p∑
j=1

fj(xj)

for any x = (x1, . . . , xp)
T ∈ Rp.

In general, we are interested in finding the least-squares fit, or the function that minimizes the mean
squared error (MSE), within a specified function space F :

m̂ = argmin
m∈F

1

n

n∑
i=1

(Yi −m(Xi))
2
.

1 Introduction

In this paper, we consider a regression problem for an additive model in which each component
function is either convex, concave, or identically zero. In [17], Ravikumar et al. describe an additive
model where each component is either identically zero or not, and they call such pattern a sparsity
pattern. Here, accordingly, we call the pattern of having either convex, concave, or identically
zero component in each dimension as a (sparse) convexity pattern. Note that there are 2p sparsity
patterns and 3p convexity patterns. We may write this model as

Yi =

p∑
j=1

[fj(Xij) + gj(Xij)] + εi

for i = 1, . . . , n, where, for each j = 1, . . . , p, fj is convex and gj is concave such that at most one
of fj and gj is nonzero. We call this regression problem the convexity pattern problem.

The reason behind studying such a nonparametric model is to combine the benefits of additive mod-
els and shape (e.g. convexity) constraints, both of which allow efficient and interpretable methods
for estimation in models with less stringent assumptions than parametric models such as linear and
polynomial ones. Additive models give a way to decompose complex high-dimensional structures
into sets of univariate components that are easier to fit and interpret. Also, convexity vastly gener-
alizes linearity and yet it is reasonably well understood – in particular, there is a finite-dimensional
expression of convexity in the statistical estimation setting that gives tractable reformulations.

In Section 2, we introduce our primitive formulation of the convexity pattern problem. We use
some basic results regarding convexity and additive modeling as well as some ideas from sparse
additive models in [17] to formulate the problem into a mixed-integer second-order cone program
(MISOCP). In Section 3, we give a review of methods for solving MISOCPs, such as branch-and-cut
methods with lift-and-project cuts, which are discussed in detail in [7] and [19].

In Section 4, we introduce a new formulation of the problem using `1-regularization. In particular,
this version is a quadratic program (QP) that resembles the lasso in [20]. We first give such a formu-
lation of the isotonic pattern problem, which is a simpler problem where each component is either
monotone increasing, monotone decreasing, or identically zero. Then, we give an analogous formu-
lation of the convexity pattern problem and explain its similarities to the isotonic pattern problem
and the lasso. In Section 5, we show empirically that this version of the problem works and give an
experimental result that suggests the pattern consistency of our formulation.

The lasso formulation is a recent one, and we are currently working to prove consistency – analogous
to sparsistency in [17] – in terms of finding the correct isotonic and convexity patterns.
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2 Formulating the Problem

The convexity pattern problem is a regression problem with an additive model where each compo-
nent function is either convex, concave, or identically zero:

Yi =

p∑
j=1

[fj(Xij) + gj(Xij)] + εi (1)

for i = 1, . . . , n, where, for each j = 1, . . . , p, fj is convex and gj is concave such that at most one
of fj and gj is nonzero.

We will first introduce some of the simpler and previously studied problems that eventually lead to
our initial formulation of the convexity pattern problem, which we will present at the end of this
section.

2.1 Convexity as a Set of Affine Constraints

We first introduce the regression problem where the true function is convex. That is,

minimize
1

n

n∑
i=1

(Yi −m(Xi))
2

s.t. m is convex.

(2)

This problem is, in fact, equivalent to the following finite-dimensional quadratic program (QP):

minimize
f,β

1

n

n∑
i=1

(Yi − fi)2

s.t. fi′ ≥ fi + βTi (Xi′ −Xi)

i, i′ = 1, . . . , n.

(3)

Here, f = (f1, . . . , fn)T is a vector of fitted values and β1, . . . , βn are the subgradients at each
point. More precisely, the solution to (3) can be viewed as a piecewise linear convex function whose
slopes are precisely these βi’s:

m̂(x) = max
i=1,...,n

(
fi + βTi (x−Xi)

)
.

Because of the inequality constraint in (3), m̂(Xi) = fi for i = 1, . . . , n. The following lemma and
proposition formally establish the equivalence.
Lemma 2.1 ([4], p.338). Let (x1, y1), . . . , (xn, yn) be n points such that xi ∈ Rp and yi ∈ R for
i = 1, . . . , n. There exists a convex function f : Rp → R such that

f(xi) = yi ∀ i = 1, . . . , n

if and only if there exist β1, . . . , βn ∈ Rp such that

yi′ ≥ yi + βTi (xi′ − xi) ∀ i, i′ = 1, . . . , n.

Proof. First, suppose that we have a convex function f that interpolates the n points. At each
point xi, since f is convex, by the supporting hyperplane theorem applied to the epigraph of f at
(xi, f(xi)), there exists a subgradient βi such that f(xi′) ≥ f(xi) + βTi (xi′ − xi) for all i′ =
1, . . . , n. This proves one half of the statement, because f(xi) = yi for all i = 1, . . . , n.

To prove the other half, suppose that there exist β1, . . . , βn ∈ Rp such that yi′ ≥ yi + βTi (xi′ − xi)
for all i, i′ = 1, . . . , n. Define f such that

f(x) = max
i=1,...,n

(
yi + βTi (x− xi)

)
for all x ∈ Rp. Then, f is a (piecewise linear) convex function. Also, for any i′, we have yi′ ≥
yi + βTi (xi′ − xi) for all i, so

f(xi′) = max
i=1,...,n

(
yi + βTi (xi′ − xi)

)
= yi′ .
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Proposition 2.2. Problems (2) and (3) are equivalent.

Proof. By Lemma 2.1, if there is a solution to (2) then there is one achieving the same MSE for (3),
and vice versa.

Proposition 2.2 is crucial, because convexity is now expressed as a finite set of affine constraints.
One can also express concavity by reversing the inequality.

2.2 The Univariate Case

In the case where the true convex function is univariate, we can do even better. Note that this is the
case with our model because each component function is univariate.

In the univariate case, we can sort the points. Then, convexity is equivalent to saying that the
subgradients are nondecreasing. Checking if the slopes are nondecreasing is, of course, checking
only n− 1 linear inequalities.

Specifically, we may first assume that our data (X1, Y1), . . . , (Xn, Yn) ∈ R×R is sorted by X , i.e.
Xi < Xi+1

for i = 1, . . . , n− 1. We assume here that no points are exactly the same.

Then, the
(
n
2

)
convexity constraints in (3) are reduced to just n− 1 of them:

fi − fi−1
Xi −Xi−1

≤ fi+1 − fi
Xi+1 −Xi

for i = 1, . . . , n− 1.

We can bring back the auxiliary variables β1, . . . , βn for these slopes in order to be consistent with
the previous formulation. (Also, in practice, this is more numerically stable and does not increase
the computation cost at all. See the documentation for [14].)

minimize
f,β

1

n

n∑
i=1

(Yi − fi)2

s.t. fi+1 = fi + βi(Xi+1 −Xi)

βi ≤ βi+1

for i = 1, . . . , n− 1.

(4)

2.3 Additive Modeling

With this formulation of convexity in mind, we now introduce the additive version in higher di-
mensions. In general, additive modeling is an effective way to deal with multivariate data, because
it breaks down the joint multivariate structure into univariate components, which are easier to fit.
Additive models are also more interpretable, because it gives one function for each covariate. In
practice, additive models often perform well even when the true model is not additive, given that p
is not large when compared to n.

First, if we assume that each component function of a model is convex, we can write the regression
problem for that model as the following QP:

minimize
f,β

1

n

n∑
i=1

(Yi −
p∑
j=1

fij)
2

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j −X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0

for j = 1, . . . , p

(5)
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where (i)j indicates the ith rank statistic with respect to the jth component values of the data. That
is, X(i)j ,j is the ith largest value among X1j , . . . , Xnj . This notation allows us to sort the points as
in (4). fij is the fitted value of the component function fj at point Xi, and βij is the subgradient of
fj at Xi.

Note that we have
∑n
i=1 fij = 0 for j = 1, . . . , p. These are often called identifiability con-

straints. Assuming that the outputs are centered, it is necessary to center the fitted values from each
component, since otherwise we can add and subtract the same amount to different components and
get the same output. That is, we lose uniqueness and components become non-identifiable. In fact,
there are more complicated identifiability issues in our convexity pattern problem, depending on the
design (X). We are currently working on solving some of them.

2.4 Convexity Pattern Problem

We are now ready to formulate the convexity pattern problem. Recall from (1) that our regression
model is

Yi =

p∑
j=1

[fj(Xij) + gj(Xij)] + εi

for i = 1, . . . , n, where for each j = 1, . . . , p, fj is convex and gj is concave such that at most one
of fj and gj is nonzero.

The biggest issue here is to somehow encode the constraint that at most one of fj and gj is nonzero
for each component. One natural way to deal with this is to introduce two binary variables that
encode whether or not fj and gj are each identically zero. This way, we no longer have a convex
program but a mixed-integer (0-1) convex program.

Also, recall that fj = (f1j , . . . , fnj)
T and gj = (g1j , . . . , gnj)

T are actually n-vectors. We can
consider fj (and gj) as a group, because we would want to zero out all entries of fj at once if we
are removing the jth component entirely. Thus, we can impose a grouped penalty on each of these
vectors, in a similar manner to that in the group lasso [22].

With these in mind, we give a mixed-integer second-order cone program (MISOCP) formulation of
the convexity pattern problem:

minimize
f,g,β,γ,z,w

1

n

n∑
i=1

(Yi −
p∑
j=1

(fij + gij))
2 + λ

p∑
j=1

(zj + wj)

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j −X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j −X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0;

n∑
i=1

gij = 0

‖fj‖2 ≤ zjB; ‖gj‖2 ≤ wjB
zj + wj ≤ 1

zj , wj ∈ {0, 1}
for j = 1, . . . , p

(6)

where fj = (f1j , . . . , fnj)
T and gj = (g1j , . . . , gnj)

T denote the vectors of fitted values from the
convex and the concave components, respectively, in each component j = 1, . . . , p. Again, (i)j
indicates the first index of the ith largest number among X1j , . . . , Xnj .

‖·‖2 is the Euclidean vector norm, so in particular fj = 0 if zj = 0, and gj = 0 if wj = 0. The
use of the Euclidean norm to each ‘group’ here is analogous to that in the group lasso [22]. Since at
most one of zj and wj is 1, at most one of fj and gj is nonzero. B is some smoothness parameter,
which in practice can just be some large number.
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λ is a sparsity parameter, which plays a much more important role that B does. Its role is intuitive:
if λ is large, any component j, whose fitted values are close to zero, will be completely zeroed out
because otherwise zj = 1 or wj = 1 so that the objective will increase by λ. We can think of this
regularization as `0-regularization, because

∑p
j=1(zj + wj) is precisely the number of non-zero

components. Since we are already using integer variables, this type of regularization (unlike in the
convex case) does not add any more computational cost.

Other parts of the program are self-explanatory, e.g. the first four constraints establish the convexity
of f and the concavity of g, and the next two are the identifiability constraints for fj and gj .

(6) is perhaps the most natural way to express the convexity pattern problem, but we may replace
the quadratic objective so that it looks more like a convex problem (except, of course, that it has
integer variables). In particular, we replace the quadratic objective with a quadratic constraint by
introducing an auxiliary scalar variable t. By doing this, the objective becomes a linear function of
the program variables. Thus, we can restate (6) as the following:

minimize
f,g,β,γ,z,w,t

t

n
+ λ

p∑
j=1

(zj + wj)

s.t.
n∑
i=1

(Yi −
p∑
j=1

(fij + gij))
2 ≤ t

f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j −X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j −X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0;

n∑
i=1

gij = 0

‖fj‖2 ≤ zjB; ‖gj‖2 ≤ wjB
zj + wj ≤ 1

zj , wj ∈ {0, 1}
for j = 1, . . . , p

(7)

Note that there areO(np) variables, O(p) conic constraints, andO(np) linear equalities/inequalities
in this program. There are precisely 2p 0-1 integer variables.

This formulation is quite nice. Without the 0-1 integer variables, this program is a second-order
cone program (SOCP)1: it consists of a linear objective, affine equalities/inequalities, and second-
order cones of the form ‖fj‖2 ≤ zjB, ‖gj‖2 ≤ wjB, and

∑n
i=1(Yi −

∑p
j=1(fij + gij))

2 ≤ t. In
particular, without the integer variables, it is a convex program and there are efficient algorithms for
solving it.

Even with the integers, there is still hope. It is perhaps a well-known fact that the 0-1 integer
linear programming is NP-complete, and general mixed-integer convex programming is NP-hard.
However, there are a few different algorithms that attempt to obtain or approximate the solution
as efficiently as possible, using the fact that the program is convex without the integers. (See [9],
[1], [18], [12], [19], and [11].) Such algorithms have been studied in the contexts of mixed-integer
linear, quadratic, and conic programming. Our interest, MISOCP, is a special case of the latter.

1[4] gives a detailed explanation of SOCPs in general. For our purposes, it suffices to know that a SOCP is
a convex program.
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3 Solving the Full MISOCP with Branch-and-Cut

The general form of a 0-1 mixed-integer second-order cone program (MISOCP) can be stated as the
following:

minimize
x∈Rl

cTx

s.t. Ax = b

‖Pix+ qi‖2 ≤ r
T
i x+ si ∀ i = 1, . . . ,m

xj ∈ {0, 1} ∀ j ∈ J ⊆ [l]

(8)

where l is the total number of program variables and [l] = {1, . . . , l}. Just like a second-order cone
program (SOCP), which is a convex program, the 0-1 MISOCP has a linear objective and a set of
linear equalities as well as second-order cones. (Note that a linear inequality is a second-order cone
with Pi = O and qi = 0.) However, it also allows a subset of its program variables to be 0-1 integer
variables.

A survey on MISOCP is given in [3]; a more comprehensive treatment of MISOCPs is given in
[7]. The methods described below are in fact general methods for mixed-integer convex programs,
including those with integer variables beyond 0 and 1. Most of these were developed first in the
context of approximating solutions to mixed-integer linear programs (MILPs), which have been
of great interest in theoretical computer science and combinatorics (e.g. the traveling salesman
problem) among other areas. (See [6] for a survey.) Here, however, we want to find the actual
optimimum (at the cost of more computation) rather than an approximate.

3.1 Relaxations

Since we have efficient solvers for convex programs, perhaps the most natural way is to relax the
integer variables and solve the relaxed program. That is, we replace the integer constraint xj ∈
{0, 1} with

xj ∈ [0, 1] (9)

for j ∈ J in (8). The relaxed problem is then convex.

Since any optimal solution to (8) is also in the feasible set of the relaxed problem, the optimum
of the relaxed problem is a lower bound on that of the original problem. The ratio of the original
optimum to the relaxed optimum is often called the integrality gap – our goal is then to devise a way
to go from the relaxed optimum to the original optimum, thereby closing the integrality gap.

3.2 Branch-and-Bound

Branch-and-bound is a simple yet useful technique that finds the original optimum given the relaxed
one. Let x∗ = (x∗1, . . . , x

∗
l )
T be an optimal solution to the relaxed problem as in (9). For any

j ∈ J , if x∗j /∈ {0, 1}, then we generate two subproblems, one with xj = 0 and the other with
xj = 1. We can think of this as “branching” out of the jth covariate – and if we repeat this for
each subproblem, at the end we will have something analogous to a binary tree with at most 2|J|

leaves, corresponding to the 2|J| different configurations of the integer variables. Each of its nodes
represents a subproblem with some of the integer variables fixed to be either 0 or 1. (For general
integers, we “branch” out to xj ≤ bx∗jc and xj ≥ dx∗je.)
Essentially, we are considering the brute-force search of a binary tree that has exponentially many
nodes in the number of integer variables. Recall that the problem itself is NP-hard and there are
no efficient algorithms; but we do have various heuristics with which we can hope to decrease the
running time slightly, such as the most infeasible branching method, which chooses to branch out of
j ∈ J such that x∗j is the closest to 0.5 among all entries of x∗.

Another trick is to add a pruning step as in the usual tree search. Note that, as we go down the tree,
the optimum of the program at each node will only increase, because we are restricting the feasible
set every time. Thus, the current optimum gives a lower bound on any optima of the children.
Because of this, we can stop branching out of a node if an optimal solution at the node is already
an integer solution, i.e. x∗j ∈ {0, 1} for all j ∈ J . In other words, we can store the current integer
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optimum at each node and stop branching out of any node that gives an optimum worse than the
current integer optimum.

These steps are detailed in Algorithm 1.

Algorithm 1 Branch-and-Bound (with Most Infeasible Branching)

Initialize x∗ ← NULL; OPT ←∞; P ← {Problem (8)}
while P not empty do

Remove a problem P from P
if relaxation of P is infeasible then

Continue to next iteration of the loop
end if
Solve the relaxed version of P and obtain its solution xP and optimum νP
if xP ∈ {0, 1}|J| and νP < OPT then
x∗ ← xP ; OPT ← νP

else if νP < OPT then
Find j = argminj∈J |(xP )j − 0.5| # Most Infeasible Branching
Define P0 ← (P with xj = 0); P1 ← (P with xj = 1)
Add P0 and P1 to P

end if
end while
return x∗ and OPT

3.3 Cuts

One can infer from the above that what matters the most in improving the efficiency is to prune the
tree more efficiently than just bounding. One important type of pruning is called the cutting plane
method.

If x∗ is a non-integral solution to some relaxation, then the cutting plane method attempts to find a
linear hyperplane that separates x∗ from all of the feasible integer points. Such hyperplane is called
a cut2. The cutting plane method is then to find a cut if an optimal solution is not integral, restrict
the feasible set to the other side of the cut, and repeat. This procedure can be put another way: the
cutting plane method approximates the feasible set by a sequence of linear inequalities generated by
cuts.

The first thing to note about cuts is that they need not exist in every case. Thus, in general, we need
to find some construction schema which allows us to generate a cut in each step. We discuss one
such construction in Sections 3.5 and 3.6.

3.4 Branch-and-Cut

The branch-and-cut method combines the traditional branch-and-bound algorithm with additional
pruning by cuts. At each node of the branch-and-bound tree, the algorithm tries to find a cut and add
the affine inequality to the relaxed problem at the node as an additional constraint. This allows us to
restrict the feasible set even further, so that the desired integral solution is (hopefully) found more
efficiently. We describe the procedure in Algorithm 2.

As an illustrative example, we present a simple mixed-integer linear program (MILP) in (10). For
MILPs, the algorithm is exactly the same, except that the underlying convex program is now a linear
program (LP) and the integer variables can take all values in N∪{0}. Given some fractional solution

2The idea of cuts was first suggested by Gomory for general integer variables in [9]. Here, we are more
interested in lift-and-project cuts in terms of convex relaxations, as suggested in terms of MILPs by Balas et al.
in [1]. In the paper, Balas et al. explain the connections between their method and those by Sherali and Adams
in [18] and by Lovász and Schrijver in [12]. Unlike Gomory cuts, lift-and-project cuts work more naturally
with 0-1 integer variables. Here, we follow the construction by Drewes in [7], which describes the general
method developed by Stubbs and Mehrotra in the context of SOCPs in [19].
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Figure 1: A synthetic example of a cut. The polyhedron represents the feasible set of a convex (in
fact, linear) program, and x optimizes the objective. The lower, rectangular part of the polyhedron
is the convex hull of the zero and one solutions. Thus, the horizontal hyperplane, which intersects
with the polyhedron on the purple area, separates the optimal solution to the relaxed problem from
all of the integer solutions, and thus it is a cut. (Figure from [5].)

Algorithm 2 Branch-and-Cut (with Most Infeasible Branching)

Initialize x∗ ← NULL; OPT ←∞; P ← {Problem (8)}
while P not empty do

Remove a problem P from P
if relaxation of P is infeasible then

Continue to next iteration of the loop
end if
Solve the relaxed version of P and obtain its solution xP and optimum νP
if xP ∈ {0, 1}|J| and νP < OPT then
x∗ ← xP ; OPT ← νP

else if νP < OPT then
if there is a cut for xP then

Add the cut to P and insert P to P
Continue to the next iteration of the loop

else
Find j = argminj∈J |(xP )j − 0.5| # Most Infeasible Branching
Define P0 ← (P with xj = 0); P1 ← (P with xj = 1)
Add P0 and P1 to P

end if
end if

end while
return x∗ and OPT

with x∗j /∈ Z, we now branch on a variable xj into xj ≤ bx∗jc and xj ≥ dx∗je instead of xj = 0 and
xj = 1. This example is borrowed from [13].

minimize
x1,x2

− 6x1 − 5x2

s.t. 3x1 + x2 ≤ 11

− x1 + 2x2 ≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z

(10)

Figure 2 shows the feasible sets of (10) and its relaxed program. First, in the relaxed version of (10),
the objective is minimized at a fractional point (2 3

7 , 3
5
7 ) with optimal value−33 1

7 . Then, we branch
out of the variable x1 into two subproblems: one with x1 ≥ 3 and the other with x1 ≤ 2. The former

10



Figure 2: A two-dimensional mixed integer linear program (MILP) (10). Figure from [13].

Figure 3: A diagram showing the branch-and-cut tree search procedure for the MILP. Figure from
[13].

gives an integer solution (3, 2) with objective−28, which becomes the current best integer solution,
and the latter gives yet another fractional solution (2, 3.5) with objective −29.5.

Since −29.5 is less than the current optimum −28, we proceed with the children of this node. But
before that, we find that there exists a cut which separates (2, 3.5) from all other integer solutions in
the feasible set of the node. This cut is 2x1 +x2 ≤ 7, so we add it to the set of constraints and solve
the new problem. This gives (1.8, 3.4) with −27.8, which is larger (i.e. worse) than the current
optimum −28. Thus, we can stop searching further down and (3, 2) with −28 becomes the final
solution. Figure 3 describes this procedure as a tree.

This is a good example where finding a cutting plane reduces the total number of nodes in the tree
(i.e. the number of convex programs to be solved): the branch-and-bound algorithm would have
branched out of x2 into two subproblems, whereas the branch-and-cut only created one subproblem.
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3.5 Lift-and-Project Construction

Here, we introduce one way to generate cuts in the context of the branch-and-cut algorithm. In broad
terms, it “lifts” the feasible set into a higher-dimensional space in which we can always generate a
cut, and “project” the solution from the cut problem back to the original space.

Speficically, we first define the following sets from (8) and (9):

C0 = {x ∈ Rl : Ax = b, ‖Pix+ qi‖2 ≤ r
T
i x+ si, xj ∈ {0, 1} ∀j ∈ J}

C = {x ∈ Rl : Ax = b, ‖Pix+ qi‖2 ≤ r
T
i x+ si, xj ∈ [0, 1] ∀j ∈ J}

Note that C0 is the feasible set of (8) and C is that of the relaxed program. Then, the ultimate
goal of cutting plane methods is to find affine inequalities whose intersection with C approximates
C0. This is equivalent to approximating conv (C0), since no affine inequality can exclude a convex
combination of any two integer points and still include the two.

We attempt to do this by introducing a hierarchy of sets fromC that eventually leads toC0. In partic-
ular, we construct the hierarchy in a way that corresponds exactly to the branch-and-cut algorithm.
For the first branching, we define

Cj = {x ∈ C : xj ∈ {0, 1}}

for j ∈ J . Note that conv (C0) ⊆ conv (Cj). Thus, we first attempt to approximate conv (Cj) by
lifting Cj into a higher-dimensional space by defining

Mj(C) = { (x, u0, u1, λ0, λ1) ∈ Rl × Rl × Rl × R× R :

x = λ0u0 + λ1u1

λ0 + λ1 = 1; λ0, λ1 ≥ 0

Au0 = b; Au1 = b∥∥Piu0 + qi
∥∥
2
≤ rTi u0 + si ∀ i = 1, . . . ,m∥∥Piu1 + qi

∥∥
2
≤ rTi u1 + si ∀ i = 1, . . . ,m

u0j = 0; u1j = 1

u0k, u
1
k ∈ [0, 1] ∀ k ∈ J \ {j} }

The intuition behind this construction is that we consider each point x to be a convex combination
of a zero solution u0 and a one solution u1. The zero/one solutions correspond to feasible points
with the jth covariate set to be exactly zero/one. λ0 and λ1 are the convex coefficients.

As we will see right away, we want Mj(C) to be a convex set. The only constraint that prevents
Mj(C) from being convex is the first one: x = λ0u0 + λ1u1, which involves a product term.
Fortunately, we can remove this non-linearity by introducing replacement variables v0 = λ0u0 and
v1 = λ1u1. Then, we obtain a convex set M̃j(C):

M̃j(C) = { (x, v0, v1, λ0, λ1) ∈ Rl × Rl × Rl × R× R :

x = v0 + v1

λ0 + λ1 = 1; λ0, λ1 ≥ 0

Av0 = λ0b; Av1 = λ1b∥∥Piv0 + λ0qi
∥∥
2
≤ rTi v0 + λ0si ∀ i = 1, . . . ,m∥∥Piv1 + λ1qi

∥∥
2
≤ rTi v1 + λ1si ∀ i = 1, . . . ,m

v0j = 0; v1j = 1

v0k ∈ [0, λ0], v1k ∈ [0, λ1] ∀ k ∈ J \ {j} }

Now, define the natural projection to be

Pj(C) = {x : (x, v0, v1, λ0, λ1) ∈ M̃j(C)}.

12



Then, it is clear that x ∈ Pj(C) is a convex combination of a zero solution and a one solution. This
directly implies that

Pj(C) = conv (Cj) .

Again, this corresponds to the first node of the branch-and-cut tree that branches out in the jth integer
variable. For any intermediate node, let the set of branched-out variables be B = {j1, . . . , j|B|} ⊆
J , in the order starting from the root node. Then, we can analogously define the convex set M̃B(C)
and the corresponding projection PB(C). x is now the output of a repeated sequence of convex
combinations, in the order of branching out. The only additional constraint is a symmetry condition
that we do not state here, and as a result we obtain the projection PB(C), which is a convex set. By
construction, it satisfies

PB(C) ⊆
⋃
j∈B

conv (Cj) .

(See pp. 50-51 in [7] for details.)

Recall that the ultimate goal was to build a hierarchy that approximates conv (C0). This is estab-
lished by the following statements, both of which are proved in [19]:

Pjr (. . . (Pj2(Pj1(C)))) = conv (C0)

for j1, . . . , j|J| ∈ J , and

(PJ)|J|(C) = conv (C0) .

3.6 Subgradient Cuts

Now that we defined the underlying sets, we can properly generate the cuts. In [19], Stubbs and
Mehrotra describe how a cut can be generated in the above lift-and-project hierarchy by solving a
simple minimum distance problem: in each node of the tree, represented by the set B, the problem
is

minimize
x∈PB(C)

‖x− x∗‖2 (11)

where x∗ is the optimal point at the node.

Since PB(C) is a convex set, this is a convex problem with a unique solution. Denote the solution
to the above problem by x̂. Then, x̂ = x∗ if and only if x∗ ∈ PB(C). Now, recall that PB(C) ⊂⋃
j∈B conv (Cj). This implies that there cannot exist a cut of x∗ if x∗ ∈ PB(C). So we are only

interested in the case where x∗ /∈ PB(C), in which case the objective of (11) is strictly positive.

The following proposition gives us what we naturally call as subgradient cuts.

Proposition 3.1. Let B ⊆ J and x∗ be the optimal solution to the relaxed problem at the node
corresponding to B. Define f(x) = ‖x− x∗‖ and let x̂ = argminx∈PB(C) f(x). If x∗ /∈ PB(C),
then there exists a subgradient ξ of f at x̂ such that

ξT (x− x̂) ≥ 0 (12)

for all x ∈ PB(C) and, at the same time, ξT (x∗ − x̂) < 0. In other words, (12) cuts off x∗ from
PB(C).

Proof. Since f is convex on PB(C) and x̂ is a minimizer of f in the convex set, by Theorem 3.4.3
in [2], there exists a subgradient ξ of f at x̂ such that

ξT (x− x̂) ≥ 0

for all x ∈ PB(C). Since ξ is a subgradient and x̂ 6= x∗, we get

ξT (x∗ − x̂) ≤ f(x∗)− f(x̂) = 0− ‖x̂− x∗‖ < 0.
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The only subgradient of f at x̂, at which f is differentiable, is

∇f(x̂) =
x̂− x∗

‖x̂− x∗‖

with ‖x̂− x∗‖ > 0. Plugging this in to (12), we obtain the subgradient cut

(x̂− x∗)Tx ≥ (x̂− x∗)T x̂ (13)

for all x ∈ Rl. This means that we can immediately (and very efficiently) compute a subgradient
cut, once we compute the optimal solution to the relaxed convex problem and the solution to the
minimum-distance problem (11).

Note that (11) is an SOCP with O(n|B|) variables and O(m|B|) conic constraints. Although this
problem is convex, it is not very small, so it is often inefficient to generate a cut at every node. As a
result, there are variants such as the cut-and-branch method which generates a cut only for the root
node and not for the children nodes.

3.7 Limitations

Although the MISOCP formulation is intuitive and does work for small n and p, it clearly does not
scale, even with the branch-and-cut methods. After all, it is still an NP-hard problem, and getting
the exact solution is nearly impossible for large n or p. With Rmosek on a personal computer, for
example, a synthetic (i.e. nice) data with n = 500 and p = 8 amounted to about 2, 000 branches and
200 cuts, taking around 5 minutes. A backfitting version, exploiting the additive structure, does not
perform much better – although it is faster, it rarely converges for p ≥ 20. It should also be noted
that backfitting algorithms are more difficult to analyze theoretically.

Another concern with the formulation, not necessarily that of mixed-integer programs, is that the
subgradients are indeterminate if any two points are identical or very close. Such case is not uncom-
mon in real-world applications. This happens because we have

βi =
fi+1 − fi
Xi+1 −Xi

as our constraint. If two points are too close, then these subgradients are left undefined (or defined
to be arbitrarily large/small), leading to non-convex/concave fits. Unlike the scalability issue, this
problem persists even in our new formulation given in the next section.
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4 Lasso and a Convex Program Formulation

More recently, we came up with a different formulation of the convexity pattern problem using an
interesting equivalence to the idea of lasso [20]. Although we have yet proved pattern consistency,
experiments indicate that the new formulation indeed does its job. The most important improvement
from the previous MISOCP formulation is that we removed all the integer constraints and formed a
convex program that finds the convexity patterns nearly as correctly.

4.1 A Review of the Lasso

In [20], Tibshirani introduced the least absolute shrinkage and selection operator, or the lasso. The
lasso, in its simplest case, can be viewed as regularized linear regression with an `1 penalty. The
general technique of imposing an `1-norm penalty is called `1-regularization (and analogously
`p-regularization for p ≥ 0).

In general, regularized least-squares minimizes a linear combination of the MSE and a convex
penalty function J of the model parameters: in linear regression, this would be

1

n
‖Y −Xβ‖22 + λJ(β) (14)

whereX is an n×p design matrix, Y is an n×1 response vector, β is a p-vector of linear coefficients,
and λ is a nonnegative scalar often called the regularization parameter. It is important to note that
this is precisely the Lagrangian of the convex optimization problem

minimize
β

1

n
‖Y −Xβ‖22

s.t. J(β) ≤ t
(15)

for some parameter t ≥ 0 that is inversely related to λ. Since J is a convex function of β, we
can think of this optimization as fitting the data as much as we can, but within some bound on the
complexity and/or the size of the model.

In the case of the lasso, the penalty term is set to be the `1-norm of the coefficient vector β. That is,
the lasso minimizes

1

n
‖Y −Xβ‖22 + λ ‖β‖1 (16)

This is the Lagrangian of the optimization problem

minimize
β

1

n
‖Y −Xβ‖22

s.t. ‖β‖1 ≤ t
(17)

for some fixed (and inversely related) nonnegative scalars λ and t. Note that this becomes a nice QP
simply by introducing auxiliary variables for the absolute values.

The single most remarkable thing about the lasso is that it induces sparsity, i.e. it yields a sparse
solution β̂ that contains (many) entries that are exactly zero. A mathematical intuition is that the
`1-norm is a convex approximation to the `0-norm, which is the number of nonzero coefficients.
Note that the `0-norm is neither a norm nor a convex function.

A perhaps more intuitive way to explain the idea is to understand Figure 4 (borrowed from [10]).
These plots are based on a 2-dimensional regularized linear regression setting. In both plots, the red
ellipses are the contour lines of the objective function, i.e. the mean squared error. β̂ here is the
minimizer of the objective without any constraints.

The blue areas are two different feasible sets representing the constraints J(β) := ‖β‖1 ≤ t

(left) and J(β) := ‖β‖22 ≤ t (right). The left plot corresponds to the lasso, or more generally
`1-regularization; the right corresponds to ridge regression3, or `2-regularization.

3Ridge regression (or more generally `2-regularization) minimizes the MSE (or some convex objective)
within the round ball as in the second plot in Figure 4. It brings an effect of shrinking the size of the coefficients.
In contrast to the lasso, however, it does not give a corner solution in general.
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Figure 4: A visualization of the optimization for the lasso (left) and ridge regression (right) in two
dimensions. Figure from [10].

The lasso plot explains how having the `1-norm as the penalty induces a sparse solution. Observe
that, drawing contours from the unconstrained minimum β̂, the first contour line that touches the
feasible set (blue diamond) always touches a corner of the feasible set, except in degenerate cases.
In other words, a corner solution is always the closest feasible point to the unconstrained minimum
and thus minimizes the objective within the feasible set. This idea naturally extends to p dimensions
for p > 2, and the p-dimensional lasso solution is always a corner solution containing zeros. The
idea of `1-regularization further extends to other estimation techniques with different models and/or
objective functions, and it is the key to our new formulation of the convexity pattern problem.

* The role of regularization parameters for the lasso. If we were to obtain corner solutions,
specifically which variables would be zeroed out? Because the objective is the mean squared error,
less relevant variables will more likely have zero coefficients.

Specifically, for each data, the actual number of zero coefficients is determined by the regularization
parameter λ. Recall that the objective for the lasso (in its Lagrangian form) is

1

n
‖Y −Xβ‖22 + λ ‖β‖1 .

Denote the solution as β̂. If λ = 0, then β̂ is the usual least-squares fit. As we increase λ, more
weight is given on the penalty term, so we penalize ‖β‖1 =

∑p
j=1 |βj | more and more. Note that

this can be thought of as “shrinking” the model: the absolute values of βj’s are forced to be smaller.
If λ =∞, then every coefficient of β̂ has to be 0.

Because the solution to the lasso is always a corner solution, we obtain more and more zero coeffi-
cients as we increase λ. The path of each coefficient βj as λ decreases from∞ to 0 is often called
the regularization path of the variable j. (We start with∞ and decrease to 0 so that every entry of
β̂ starts from zero and the next most relevant one becomes nonzero.)

Figure 5, borrowed from [10], is an example of regularization paths of the variables in a prostrate
cancer data. Intuitively, smaller shrinkage factor (x-axis) corresponds to larger λ. As we increase
s from 0 (i.e. decrease λ from ∞), previously zero coefficients become active. The variables that
emerge earlier give a fit with a smaller MSE than other variables.

We can choose an appropriate value of the regularization by cross-validation. In this case, the
red dotted line signifies the optimal shrinkage factor, leading to all but three variables having zero
coefficients.

4.2 The Isotonic Pattern Problem

In order to explain how the lasso plays its crucial role in our problem, we first introduce a slightly
simpler problem which we call the isotonic pattern problem or the monotonicity pattern prob-
lem. This is the same problem as the convexity pattern problem except that we assume each nonzero
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Figure 5: The regularization path of the lasso applied to a prostrate cancer data. Figure and data
from [10].

component function to be either monotone increasing or decreasing, instead of either convex or con-
cave.

In the univariate case, assuming sorted distinct points (i.e. Xi < Xi+1), the isotonic pattern problem
corresponds to the following problem:

minimize
f,g

1

n

n∑
i=1

(Yi − (fi + gi))
2

s.t. fi ≤ fi+1

gi ≥ gi+1

for i = 1, . . . , n− 1
n∑
i=1

fi = 0;

n∑
i=1

gi = 0

at most one of f and g is nonzero.

(18)

Here, f and g correspond to increasing and decreasing components, respectively. The affine con-
straints

∑n
i=1 fi = 0 and

∑n
i=1 gi = 0 are the usual identifiability constraints for additive mod-

els. (See Section 2.3 for explanation.) Just like the solution to the convexity pattern problem is
a piecewise linear convex/concave fit, the solution to this problem is a piecewise constant increas-
ing/decreasing fit, i.e. a step function.

(18) looks straightforward, yet we need some way to express the constraint that “at most one of f
and g is nonzero” in affine/convex terms. To do this, we first define the differences, i.e.

∆fi = fi+1 − fi
∆gi = gi+1 − gi

for i = 1, . . . , n − 1. The monotonicity constraints in (18) ensure that ∆fi are nonnegative and
∆gi are nonpositive. (Note that the analogues of these difference variables in the convexity pattern
problem were the subgradients βi and γi.)

One important observation is that, because the points are centered (
∑n
i=1 fi = 0 and

∑n
i=1 gi = 0),

we can recover the original points fi and gi exactly by just knowing the differences ∆fi and ∆gi.
In other words, any model in this problem can be parameterized by ∆f = (∆f1, . . . ,∆fn−1)T and
∆g = (∆g1, . . . ,∆gn−1)T only.
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At this point, we can make some interesting observations on how these variables relate to the charac-
teristics of the resulting fit. First, the absolute sizes of ∆f and ∆g correspond to the overall variance
of the fit: more concretely, the height of each step in the step function solution. There are two dif-
ferent things that we want about variance. One is that, if we want the step function fit to have low
staircases, so as to prevent overfitting, then we need to shrink the entries of ∆f and ∆g. The other
is that, if we want the fit to have only few steps, we want many entries of ∆f and ∆g to be zero and
select only a few entries to be nonzero.

Second and more importantly, we need at least one of ∆f and ∆g to be exactly a zero vector, in
order to ensure that the fit is either monotone increasing or decreasing. This would mean that if an
entry of ∆f is nonzero, then every entry of ∆g must be zeroed out, and vice versa.

In summary, we want shrinkage and selection of the differences ∆f and ∆g! Thus, our idea is
to use `1-regularization as in the lasso (least absolute shrinkage and selection operator) on this
characterization of the model.

Define the penalty as the `1-norm of the difference vectors:

J

([
∆f
∆g

])
=

∥∥∥∥[∆f∆g

]∥∥∥∥
1

= ‖∆f‖1 + ‖∆g‖1

=

n−1∑
i=1

(fi+1 − fi) +

n−1∑
i=1

(gi − gi+1)

= (fn − f1) + (g1 − gn).

Note that the penalty only involves four terms because ∆f is nonnegative and ∆g is nonpositive.
Now, we apply this penalty for the desired regularization as in (14):

minimize
f,g

1

n

n∑
i=1

(Yi − (fi + gi))
2 + λ{(fn − f1) + (g1 − gn)}

s.t. fi ≤ fi+1

gi ≥ gi+1

for i = 1, . . . , n− 1
n∑
i=1

fi = 0;

n∑
i=1

gi = 0

(19)

As is the lasso, this is a convex QP involving only O(n) linear constraints. We describe a perhaps
striking phenomenon in the following (informally stated) conjecture:
Conjecture 4.1 (informally stated). Suppose we have (19) with a true function that is monotone
increasing (decreasing). Under “good” conditions, as λ goes from∞ to 0, the entries of ∆f (∆g)
will become nonzero before those of ∆g (∆f ). In particular, with an appropriately chosen λ, only
the correct pattern will emerge.

Another way to state this conjecture is that, in the regularization path of the entries of
[
∆f
∆g

]
, the

most significant entries from the correct component will become nonzero first.

Figure 6 shows an illustrative example of our approach. The three points – (X1, Y1) = (1, 1),
(X2, Y2) = (2, 2), and (X3, Y3) = (3, 5) – are the data from a true model which is monotone
increasing. The height of the red solid slope between X2 and X3 is ∆f2, and the height of the
orange and less steep one between X1 and X2 is ∆f1. The heights (drawn as zero in the figure) of
the dotted lines between X1 and X2 and between X2 and X3 are ∆g1 and ∆g2, respectively. Note
first that the slopes are not the actual fit but only the heights of the steps in the step function output.

Suppose we solve (19) on these points repeatedly with decreasing λ. As we gradually decrease λ
from∞, ∆f2 (red) will emerge first, because increasing ∆f2 first will decrease the MSE more than
increasing ∆f1 (orange) or decreasing ∆g1 (skyblue) or ∆g2 (blue) by the same amount. The next
difference to become relevant would be the less steep ∆f1 (orange). We stop decreasing λ before
one of the other two monotone decreasing components, ∆g1 (skyblue) and ∆g2 (blue), also become
nonzero.
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Figure 6: An illustrative example of solving the isotonic pattern problem as in (19). The lines are
drawn only to indicate the height, and they do not correspond to the fit itself. The actual fit is a step
function.

Finally, we can easily extend this idea to the p-dimensional isotonic problem for p > 1. The
multivariate extension is formed analogously to (5). This is given by

minimize
f,g

1

n

n∑
i=1

(Yi −
p∑
j=1

(fij + gij))
2

+ λ

p∑
j=1

{(f(n)j ,j − f(1)j ,j) + (g(1)j ,j − g(n)j ,j)}

s.t. f(i)j ,j ≤ f(i+1)j ,j

g(i)j ,j ≥ g(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0;

n∑
i=1

gij = 0

for j = 1, . . . , p

(20)

where (i)j again is the first index of the ith largest element in {X1j , . . . , Xnj}. Figure 7 is a sample
fit obtained by solving this QP. Notice that the solution is a step function.

Naturally, we can define

∆f(i)j ,j = f(i+1)j ,j − f(i)j ,j
∆g(i)j ,j = g(i+1)j ,j − g(i)j ,j

∆fj = (∆f(1)j ,j , . . . ,∆f(n−1)j ,j)
T

∆gj = (∆g(1)j ,j , . . . ,∆g(n−1)j ,j)
T

for i = 1, . . . , n− 1 and j = 1, . . . , p. We can then pose the analogous conjecture:
Conjecture 4.2 (informally stated). Suppose we have (20) with a true function that is monotone
increasing (decreasing). Under “good” conditions, as λ goes from∞ to 0, the entries of ∆fj (∆gj)
will become nonzero before those of ∆gj (∆fj) w.h.p. for each j = 1, . . . , p. In particular, with an
appropriately chosen λ, only the correct pattern will emerge.

We believe that we have a proof of Conjecture 4.1, i.e. the univariate case, and we are currently
working on the multivariate case. Note that, here, these conjectures are stated informally; in fact,
what we are working to prove is the pattern consistency of our algorithm.
Conjecture 4.3 (convexity pattern consistency). Under certain conditions on λ, the convexity pat-
tern given by solving (20) is consistent, i.e. the probability that the estimated pattern is correct
converges to 1 as n→∞.
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Figure 7: A sample solution to an isotonic pattern problem with n = 200 and p = 8. λwas chosen at
15. The two plots shown here are two of the eight components, the left with a monotone decreasing
true function and the right with a monotone increasing one. The red and blue lines are the increasing
and decreasing fitted values, respectively – notice that the other component is completely zeroed
out. Original code by Sabyasachi Chatterjee.

4.3 The Convexity Pattern Problem with `1-Regularization

Now, we return to our original problem in which each nonzero component is either convex or con-
cave. Is there an analogous lasso formulation?

The p-dimensional convexity pattern problem can be stated the following way:

minimize
f,g,β,γ

1

n

n∑
i=1

(Yi −
p∑
j=1

(fij + gij))
2

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j −X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j −X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0;

n∑
i=1

gij = 0

for j = 1, . . . , p

at most one of f and g is nonzero.

Considering how the isotonic (monotonicity) pattern problem turned into the lasso, one observation
is crucial:

the subgradients are monotone!

Shrinking and selecting the subgradients β and γ correspond to 1) shrinking the overall fit and 2)
forcing either the convex or the concave component to emerge before the other component.

Most of the ideas that we discussed in the previous section apply here, except that knowing the sub-
gradients and the usual identifiability constraints is not enough to recover the fitted values. Unlike in
the isotonic pattern problem, here we have the differences in subgradients, which are not necessarily
centered at zero. Nevertheless, we believe that one additional set of identifiablity constraints will
allow us to get around this issue.
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We re-state the convexity pattern problem as the following:

minimize
f,g,β,γ

1

n

n∑
i=1

(Yi −
p∑
j=1

(fij + gij))
2

+ λ

p∑
j=1

{(β(n)j ,j − β(1)j ,j) + (γ(1)j ,j − γ(n)j ,j)}

s.t. f(i+1)j ,j = f(i)j ,j + β(i)j ,j(X(i+1)j ,j −X(i)j ,j)

g(i+1)j ,j = g(i)j ,j + γ(i)j ,j(X(i+1)j ,j −X(i)j ,j)

β(i)j ,j ≤ β(i+1)j ,j

γ(i)j ,j ≥ γ(i+1)j ,j

for i = 1, . . . , n− 1 and j = 1, . . . , p
n∑
i=1

fij = 0;

n∑
i=1

gij = 0 for j = 1, . . . , p.

(21)

The idea is clearer in the univariate case. Assuming the data is sorted, we have

minimize
f,g

1

n

n∑
i=1

(Yi − (fi + gi))
2 + λ{(βn − β1) + (γ1 − γn)}

s.t. fi+1 = fi + βi(Xi+1 −Xi)

gi+1 = gi + γi(Xi+1 −Xi)

βi ≤ βi+1

γi ≥ γi+1

for i = 1, . . . , n− 1
n∑
i=1

fi = 0;

n∑
i=1

gi = 0.

(22)

As examples and experiments show in the following section, this formulation works well and much
more efficiently than the MISOCP formulation in practice. We believe that this is the case because
of the the same reasoning behind using `1-regularization in the isotonic pattern problem.

4.4 Limitations

The lasso formulation indeed does remove the integer variables in our previous MISOCP formula-
tion. However, it still does not remove the instability caused by close or identical points, since it
does not change the definition of the subgradients:

βi =
fi+1 − fi
Xi+1 −Xi

which does not behave well if Xi ≈ Xi+1.

Also, the quality of the lasso fit (i.e. how well it minimizes the mean squared error) is not as good
as that of the MISOCP fit. This is largely due to the fact that one global λ affects both the pattern
(convex, concave, or zero) and the size of the differences, unlike in the MISOCP formulation where
B controls the size and λ only chooses the pattern. However, once we recover the correct pattern
efficiently, we may use the standard backfitting algorithm, where for each component we perform
a univariate convex/concave regression as in (4). After all, the entire procedure is still much more
efficient than solving a MISOCP of similar size.
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5 Examples and Experiments

5.1 Examples on Synthetic Data

5.1.1 The MISOCP Formulation
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Figure 8: A sample fit using the MISOCP formulation on a 2-dimensional data generated from a
true model with one convex and one concave components. The two plots show the true and fitted
component functions (must be either concave or convex), as well as the additive data and fitted
values. Note that each fitted component is a piecewise-linear function, because of the formulation
in Lemma 2.1 – in fact, the number of pieces in the fit is inversely proportional to the degree of
regularization (λ).
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Figure 9: Two more sample fits using the MISOCP formulation on a 5-dimensional data including a
sparse component (left) and on a 7-dimensional data with all but two (one convex and one concave)
components identically zero (right). A sparse fitted component is not drawn, as in component 4 on
the left, for example. Both patterns are recovered exactly.
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5.1.2 The Lasso Formulation
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Figure 10: A sample fit using the lasso formulation on a 3-dimensional data with one convex, one
sparse, and one concave components. Note that the fits have less number of fits than the MISOCP
fits and thus underfit the data. However, as discussed in Section 4.4, once we have the correct
pattern, we can use the backfitting algorithm with univariate convex/concave regression. The entire
procedure is still efficient, unlike solving the MISOCP.

-1.0 0.0 0.5 1.0

-5
0

5

Component 1

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 2

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 3

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 4

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 5

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 6

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 7

xj

y

-1.0 0.0 0.5 1.0

-5
0

5

Component 8

xj

y

Data
True component
Convex component
Concave component
Additive fit

Figure 11: A sample fit using the lasso formulation of the problem on an 8-dimensional data includ-
ing sparse components. A sparse fitted component is not drawn, as in components 2 and 3. The
pattern is recovered correctly, as with all other figures presented above.
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5.2 The Effects of Regularization for the Lasso Formulation

Figure 12: Four test runs on the same 3-dimensional synthetic data using the lasso formulation with
different choice of λ’s: 0.02, 0.05, 0.1, and 1.0. The usual notion of regularizataion is embodied
in the number of pieces in the piecewise-linear fits. A less regularized fit (small λ) contains many
pieces and often appears to be smooth and strictly convex/concave; a more regularized fit (large λ)
has only few. Note that if λ is too small (0.02) then a sparse component is not found; if too large (1)
then every component is a single piece, i.e. identically zero.

25



5.3 Experiments on Pattern Recovery (Consistency)

In [21], Wainwright demonstrates a thresholding phenomenon in the lasso between sample size
and the probability of successfully recovering the correct sparsity pattern. In particular, he gives
specific choice of λ which he shows is necessary and sufficient for the lasso to be consistent, i.e. the
probability of recovering the correct sparsity pattern converges to 1 as n→∞.

Here, we attempt to empirically demonstrate a similar phenomenon with our lasso formulation,
which we think is very similar to the standard lasso itself. As in [21], we computed the rate at which
the algorithm successfully recovers the convexity pattern for each sample size n and dimension
p. This is done by repeatedly generating random convex/concave additive data and counting the

number of fits that find the correct pattern. We analogously chose σ = 0.5, λ = σ
√

log p
n and

k = d0.40p0.75e where k is the number of sparse components. Each nonzero component was
chosen to be convex or concave at random with probability 0.5 each.
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Figure 13: Left: A plot of success rate for recovering the convexity pattern using the lasso formu-
lation for n = 16, 32, 64, 128, 256, 512 and p = 5, 10, 15, 20. Each point represents the ratio of
success to the total number of trials (20) for each given n and p. Right: The average running time
for the trials.

It does seem that the thresholding phenomenon continues to appear here, such as in the p = 20 curve
with the threshold between 64 and 128. This suggests, again, that the problem is nearly equivalent
to the lasso.
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As a baseline, we also ran the same experiment on our MISOCP formulation. Figure 14 shows the
result. Note the huge difference in the scale of the running times, even though the testing sample
sizes and dimensions were reduced by more than half.
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Figure 14: Left: A plot of success rate for recovering the convexity pattern using the MISOCP
formulation. Each point represents the ratio of success to the total number of trials (20) for given n
and p. Right: The average running time for the trials. (The sudden spike in running time seems to
be an issue with the system rather than the algorithm.)
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